searching the database
Your data matches 656 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001274
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
St001274: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The number of indecomposable injective modules with projective dimension equal to two.
Matching statistic: St001088
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
St001088: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
Description
Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
Matching statistic: St001231
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001231: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001231: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
Description
The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension.
Actually the same statistics results for algebras with at most 7 simple modules when dropping the assumption that the module has projective dimension one. The author is not sure whether this holds in general.
Matching statistic: St001234
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001234: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001234: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
Description
The number of indecomposable three dimensional modules with projective dimension one.
It return zero when there are no such modules.
Matching statistic: St000314
(load all 48 compositions to match this statistic)
(load all 48 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000314: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000314: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => 1 = 0 + 1
[1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 3 = 2 + 1
Description
The number of left-to-right-maxima of a permutation.
An integer σi in the one-line notation of a permutation σ is a '''left-to-right-maximum''' if there does not exist a j<i such that σj>σi.
This is also the number of weak exceedences of a permutation that are not mid-points of a decreasing subsequence of length 3, see [1] for more on the later description.
Matching statistic: St000996
(load all 25 compositions to match this statistic)
(load all 25 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000996: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000996: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => 1 = 0 + 1
[1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 3 = 2 + 1
Description
The number of exclusive left-to-right maxima of a permutation.
This is the number of left-to-right maxima that are not right-to-left minima.
Matching statistic: St001210
(load all 19 compositions to match this statistic)
(load all 19 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001210: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001210: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 2 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3 = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4 = 2 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4 = 2 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 3 = 1 + 2
Description
Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000052
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Matching statistic: St000053
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
Description
The number of valleys of the Dyck path.
Matching statistic: St000237
(load all 27 compositions to match this statistic)
(load all 27 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 0
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,2,4,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => 0
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,4,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,3,5,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,3,5,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,2,3,5,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2,5,4,1] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2,4,5,1] => 2
Description
The number of small exceedances.
This is the number of indices i such that πi=i+1.
The following 646 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000441The number of successions of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000989The number of final rises of a permutation. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000007The number of saliances of the permutation. St000015The number of peaks of a Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000542The number of left-to-right-minima of a permutation. St000991The number of right-to-left minima of a permutation. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001461The number of topologically connected components of the chord diagram of a permutation. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St000444The length of the maximal rise of a Dyck path. St000021The number of descents of a permutation. St000024The number of double up and double down steps of a Dyck path. St000039The number of crossings of a permutation. St000065The number of entries equal to -1 in an alternating sign matrix. St000083The number of left oriented leafs of a binary tree except the first one. St000121The number of occurrences of the contiguous pattern [.,[.,[.,[.,.]]]] in a binary tree. St000155The number of exceedances (also excedences) of a permutation. St000159The number of distinct parts of the integer partition. St000214The number of adjacencies of a permutation. St000234The number of global ascents of a permutation. St000241The number of cyclical small excedances. St000245The number of ascents of a permutation. St000292The number of ascents of a binary word. St000306The bounce count of a Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000338The number of pixed points of a permutation. St000340The number of non-final maximal constant sub-paths of length greater than one. St000354The number of recoils of a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000497The lcb statistic of a set partition. St000546The number of global descents of a permutation. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000648The number of 2-excedences of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000711The number of big exceedences of a permutation. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001479The number of bridges of a graph. St001489The maximum of the number of descents and the number of inverse descents. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001622The number of join-irreducible elements of a lattice. St001631The number of simple modules S with dimExt1(S,A)=1 in the incidence algebra A of the poset. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001826The maximal number of leaves on a vertex of a graph. St000010The length of the partition. St000011The number of touch points (or returns) of a Dyck path. St000013The height of a Dyck path. St000026The position of the first return of a Dyck path. St000056The decomposition (or block) number of a permutation. St000061The number of nodes on the left branch of a binary tree. St000062The length of the longest increasing subsequence of the permutation. St000069The number of maximal elements of a poset. St000084The number of subtrees. St000105The number of blocks in the set partition. St000153The number of adjacent cycles of a permutation. St000157The number of descents of a standard tableau. St000164The number of short pairs. St000167The number of leaves of an ordered tree. St000239The number of small weak excedances. St000273The domination number of a graph. St000291The number of descents of a binary word. St000308The height of the tree associated to a permutation. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000331The number of upper interactions of a Dyck path. St000335The difference of lower and upper interactions. St000382The first part of an integer composition. St000383The last part of an integer composition. St000390The number of runs of ones in a binary word. St000443The number of long tunnels of a Dyck path. St000470The number of runs in a permutation. St000544The cop number of a graph. St000619The number of cyclic descents of a permutation. St000654The first descent of a permutation. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000740The last entry of a permutation. St000925The number of topologically connected components of a set partition. St000932The number of occurrences of the pattern UDU in a Dyck path. St000971The smallest closer of a set partition. St000990The first ascent of a permutation. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001050The number of terminal closers of a set partition. St001051The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition. St001058The breadth of the ordered tree. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a Dyck path as follows:
St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001733The number of weak left to right maxima of a Dyck path. St001829The common independence number of a graph. St000203The number of external nodes of a binary tree. St000236The number of cyclical small weak excedances. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000917The open packing number of a graph. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn−1] by adding c0 to cn−1. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of projdim(S)+injdim(S) over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000381The largest part of an integer composition. St000686The finitistic dominant dimension of a Dyck path. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001062The maximal size of a block of a set partition. St000502The number of successions of a set partitions. St000877The depth of the binary word interpreted as a path. St001061The number of indices that are both descents and recoils of a permutation. St000504The cardinality of the first block of a set partition. St001948The number of augmented double ascents of a permutation. St000326The position of the first one in a binary word after appending a 1 at the end. St000906The length of the shortest maximal chain in a poset. St000215The number of adjacencies of a permutation, zero appended. St000068The number of minimal elements in a poset. St000674The number of hills of a Dyck path. St000297The number of leading ones in a binary word. St000873The aix statistic of a permutation. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St000117The number of centered tunnels of a Dyck path. St000221The number of strong fixed points of a permutation. St000895The number of ones on the main diagonal of an alternating sign matrix. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000475The number of parts equal to 1 in a partition. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000287The number of connected components of a graph. St000439The position of the first down step of a Dyck path. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St001249Sum of the odd parts of a partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000352The Elizalde-Pak rank of a permutation. St000247The number of singleton blocks of a set partition. St000732The number of double deficiencies of a permutation. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St001557The number of inversions of the second entry of a permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001811The Castelnuovo-Mumford regularity of a permutation. St000145The Dyson rank of a partition. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000742The number of big ascents of a permutation after prepending zero. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000703The number of deficiencies of a permutation. St000451The length of the longest pattern of the form k 1 2. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000646The number of big ascents of a permutation. St000837The number of ascents of distance 2 of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001889The size of the connectivity set of a signed permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001862The number of crossings of a signed permutation. St000454The largest eigenvalue of a graph if it is integral. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St000137The Grundy value of an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001525The number of symmetric hooks on the diagonal of a partition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000012The area of a Dyck path. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000659The number of rises of length at least 2 of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000921The number of internal inversions of a binary word. St000954Number of times the corresponding LNakayama algebra has Exti(D(A),A)=0 for i>0. St000984The number of boxes below precisely one peak. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St001273The projective dimension of the first term in an injective coresolution of the regular module. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001424The number of distinct squares in a binary word. St001480The number of simple summands of the module J^2/J^3. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between eiJ and ejJ (the radical of the indecomposable projective modules). St001910The height of the middle non-run of a Dyck path. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001955The number of natural descents for set-valued two row standard Young tableaux. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000478Another weight of a partition according to Alladi. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000080The rank of the poset. St000260The radius of a connected graph. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000929The constant term of the character polynomial of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001712The number of natural descents of a standard Young tableau. St000259The diameter of a connected graph. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000911The number of maximal antichains of maximal size in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001645The pebbling number of a connected graph. St001782The order of rowmotion on the set of order ideals of a poset. St001118The acyclic chromatic index of a graph. St001651The Frankl number of a lattice. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000054The first entry of the permutation. St000649The number of 3-excedences of a permutation. St001403The number of vertical separators in a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St001566The length of the longest arithmetic progression in a permutation. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000944The 3-degree of an integer partition. St001176The size of a partition minus its first part. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001587Half of the largest even part of an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001657The number of twos in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001961The sum of the greatest common divisors of all pairs of parts. St000295The length of the border of a binary word. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001128The exponens consonantiae of a partition. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000022The number of fixed points of a permutation. St000392The length of the longest run of ones in a binary word. St000505The biggest entry in the block containing the 1. St000982The length of the longest constant subword. St001618The cardinality of the Frattini sublattice of a lattice. St001462The number of factors of a standard tableaux under concatenation. St000456The monochromatic index of a connected graph. St001730The number of times the path corresponding to a binary word crosses the base line. St000942The number of critical left to right maxima of the parking functions. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000461The rix statistic of a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000894The trace of an alternating sign matrix. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000455The second largest eigenvalue of a graph if it is integral. St000678The number of up steps after the last double rise of a Dyck path. St000702The number of weak deficiencies of a permutation. St000710The number of big deficiencies of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001434The number of negative sum pairs of a signed permutation. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000051The size of the left subtree of a binary tree. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St000838The number of terminal right-hand endpoints when the vertices are written in order. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001134The largest label in the subtree rooted at the sister of 1 in the leaf labelled binary unordered tree associated with the perfect matching. St001201The grade of the simple module S_0 in the special CNakayama algebra corresponding to the Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001372The length of a longest cyclic run of ones of a binary word. St001530The depth of a Dyck path. St000025The number of initial rises of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000738The first entry in the last row of a standard tableau. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001621The number of atoms of a lattice. St000567The sum of the products of all pairs of parts. St000706The product of the factorials of the multiplicities of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001568The smallest positive integer that does not appear twice in the partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000534The number of 2-rises of a permutation. St000934The 2-degree of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001115The number of even descents of a permutation. St001096The size of the overlap set of a permutation. St000936The number of even values of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000100The number of linear extensions of a poset. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000327The number of cover relations in a poset. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000635The number of strictly order preserving maps of a poset into itself. St000640The rank of the largest boolean interval in a poset. St000658The number of rises of length 2 of a Dyck path. St000693The modular (standard) major index of a standard tableau. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000874The position of the last double rise in a Dyck path. St000914The sum of the values of the Möbius function of a poset. St000946The sum of the skew hook positions in a Dyck path. St000947The major index east count of a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001139The number of occurrences of hills of size 2 in a Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n−1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001890The maximum magnitude of the Möbius function of a poset. St001959The product of the heights of the peaks of a Dyck path. St001964The interval resolution global dimension of a poset. St000035The number of left outer peaks of a permutation. St000647The number of big descents of a permutation. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St000834The number of right outer peaks of a permutation. St000251The number of nonsingleton blocks of a set partition. St000253The crossing number of a set partition. St001330The hat guessing number of a graph. St000883The number of longest increasing subsequences of a permutation. St001769The reflection length of a signed permutation. St000356The number of occurrences of the pattern 13-2. St000366The number of double descents of a permutation. St000884The number of isolated descents of a permutation. St000496The rcs statistic of a set partition. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000665The number of rafts of a permutation. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001867The number of alignments of type EN of a signed permutation. St000492The rob statistic of a set partition. St001732The number of peaks visible from the left. St001864The number of excedances of a signed permutation. St000839The largest opener of a set partition. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000359The number of occurrences of the pattern 23-1. St000731The number of double exceedences of a permutation. St001846The number of elements which do not have a complement in the lattice. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000028The number of stack-sorts needed to sort a permutation. St000141The maximum drop size of a permutation. St001052The length of the exterior of a permutation. St001820The size of the image of the pop stack sorting operator. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000225Difference between largest and smallest parts in a partition. St000296The length of the symmetric border of a binary word. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3. St000460The hook length of the last cell along the main diagonal of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000781The number of proper colouring schemes of a Ferrers diagram. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001175The size of a partition minus the hook length of the base cell. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001248Sum of the even parts of a partition. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001389The number of partitions of the same length below the given integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001527The cyclic permutation representation number of an integer partition. St001541The Gini index of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001571The Cartan determinant of the integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St000074The number of special entries. St000617The number of global maxima of a Dyck path. St000891The number of distinct diagonal sums of a permutation matrix. St000176The total number of tiles in the Gelfand-Tsetlin pattern. St000284The Plancherel distribution on integer partitions. St000474Dyson's crank of a partition. St000477The weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000770The major index of an integer partition when read from bottom to top. St000782The indicator function of whether a given perfect matching is an L & P matching. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000928The sum of the coefficients of the character polynomial of an integer partition. St001060The distinguishing index of a graph. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001868The number of alignments of type NE of a signed permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000662The staircase size of the code of a permutation. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St000307The number of rowmotion orbits of a poset. St000909The number of maximal chains of maximal size in a poset. St000519The largest length of a factor maximising the subword complexity. St000922The minimal number such that all substrings of this length are unique. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000091The descent variation of a composition. St001781The interlacing number of a set partition. St000090The variation of a composition. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000498The lcs statistic of a set partition. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000230Sum of the minimal elements of the blocks of a set partition. St000133The "bounce" of a permutation. St000315The number of isolated vertices of a graph. St000317The cycle descent number of a permutation. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000367The number of simsun double descents of a permutation. St000516The number of stretching pairs of a permutation. St000650The number of 3-rises of a permutation. St000663The number of right floats of a permutation. St000779The tier of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000872The number of very big descents of a permutation. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001114The number of odd descents of a permutation. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001130The number of two successive successions in a permutation. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by \tau \Omega^1 composed with its inverse in the corresponding Nakayama algebra. St001377The major index minus the number of inversions of a permutation. St001394The genus of a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001520The number of strict 3-descents. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001556The number of inversions of the third entry of a permutation. St001689The number of celebrities in a graph. St001727The number of invisible inversions of a permutation. St001728The number of invisible descents of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001810The number of fixed points of a permutation smaller than its largest moved point. St001822The number of alignments of a signed permutation. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001866The nesting alignments of a signed permutation. St001903The number of fixed points of a parking function. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000210Minimum over maximum difference of elements in cycles. St000553The number of blocks of a graph. St000657The smallest part of an integer composition. St000717The number of ordinal summands of a poset. St000729The minimal arc length of a set partition. St000876The number of factors in the Catalan decomposition of a binary word. St000916The packing number of a graph. St001151The number of blocks with odd minimum. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001333The cardinality of a minimal edge-isolating set of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001363The Euler characteristic of a graph according to Knill. St001405The number of bonds in a permutation. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001468The smallest fixpoint of a permutation. St001471The magnitude of a Dyck path. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001729The number of visible descents of a permutation. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001806The upper middle entry of a permutation. St001896The number of right descents of a signed permutations. St001935The number of ascents in a parking function. St000258The burning number of a graph. St000363The number of minimal vertex covers of a graph. St000469The distinguishing number of a graph. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St000767The number of runs in an integer composition. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000899The maximal number of repetitions of an integer composition. St000918The 2-limited packing number of a graph. St001267The length of the Lyndon factorization of the binary word. St001366The maximal multiplicity of a degree of a vertex of a graph. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001437The flex of a binary word. St001481The minimal height of a peak of a Dyck path. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St000808The number of up steps of the associated bargraph. St000973The length of the boundary of an ordered tree. St000975The length of the boundary minus the length of the trunk of an ordered tree. St000983The length of the longest alternating subword. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000850The number of 1/2-balanced pairs in a poset. St001926Sparre Andersen's position of the maximum of a signed permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001644The dimension of a graph. St001812The biclique partition number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!