searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000576
St000576: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 1
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 0
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 1
{{1,2,4},{3}}
=> 0
{{1,2},{3,4}}
=> 1
{{1,2},{3},{4}}
=> 3
{{1,3,4},{2}}
=> 0
{{1,3},{2,4}}
=> 0
{{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> 0
{{1},{2,3,4}}
=> 1
{{1},{2,3},{4}}
=> 3
{{1,4},{2},{3}}
=> 1
{{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> 3
{{1},{2},{3},{4}}
=> 6
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 1
{{1,2,3,5},{4}}
=> 0
{{1,2,3},{4,5}}
=> 1
{{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> 0
{{1,2,4},{3,5}}
=> 0
{{1,2,4},{3},{5}}
=> 2
{{1,2,5},{3,4}}
=> 0
{{1,2},{3,4,5}}
=> 1
{{1,2},{3,4},{5}}
=> 3
{{1,2,5},{3},{4}}
=> 1
{{1,2},{3,5},{4}}
=> 2
{{1,2},{3},{4,5}}
=> 3
{{1,2},{3},{4},{5}}
=> 6
{{1,3,4,5},{2}}
=> 0
{{1,3,4},{2,5}}
=> 0
{{1,3,4},{2},{5}}
=> 2
{{1,3,5},{2,4}}
=> 0
{{1,3},{2,4,5}}
=> 0
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 1
{{1,3},{2,5},{4}}
=> 1
{{1,3},{2},{4,5}}
=> 2
{{1,3},{2},{4},{5}}
=> 5
{{1,4,5},{2,3}}
=> 0
{{1,4},{2,3,5}}
=> 0
{{1,4},{2,3},{5}}
=> 2
Description
The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal and 2 a minimal element.
This is the number of pairs $i\lt j$ in different blocks such that $i$ is the maximal element of a block and $j$ is the minimal element of a block.
Matching statistic: St000772
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 35%●distinct values known / distinct values provided: 29%
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 35%●distinct values known / distinct values provided: 29%
Values
{{1,2}}
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,1}
{{1},{2}}
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,1}
{{1,2,3}}
=> [2,3,1] => [3] => ([],3)
=> ? ∊ {0,0,1,3}
{{1,2},{3}}
=> [2,1,3] => [3] => ([],3)
=> ? ∊ {0,0,1,3}
{{1,3},{2}}
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,1,3}
{{1},{2},{3}}
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,1,3}
{{1,2,3,4}}
=> [2,3,4,1] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,2,3},{4}}
=> [2,3,1,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,2,4},{3}}
=> [2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
{{1,2},{3,4}}
=> [2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,2},{3},{4}}
=> [2,1,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,3,4},{2}}
=> [3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,3},{2,4}}
=> [3,4,1,2] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,4},{2,3}}
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,4},{2},{3}}
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1},{2},{3},{4}}
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,3,3,3,6}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,2,6},{3,4,5}}
=> [2,6,4,5,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,6},{3,5},{4}}
=> [2,6,5,4,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,6},{3},{4,5}}
=> [2,6,3,5,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,2},{3,6},{4},{5}}
=> [2,1,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,3,4,6},{2,5}}
=> [3,5,4,6,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,3,4,6},{2},{5}}
=> [3,2,4,6,5,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,3,6},{2,4,5}}
=> [3,4,6,5,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,3},{2,4,6},{5}}
=> [3,4,1,6,5,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,3,6},{2,5},{4}}
=> [3,5,6,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3,6},{2},{4,5}}
=> [3,2,6,5,4,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,3},{2,6},{4,5}}
=> [3,6,1,5,4,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,3},{2,6},{4},{5}}
=> [3,6,1,4,5,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,4,6},{2,3,5}}
=> [4,3,5,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001877
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 18% ●values known / values provided: 32%●distinct values known / distinct values provided: 18%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 18% ●values known / values provided: 32%●distinct values known / distinct values provided: 18%
Values
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,3}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,1,1,3}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,3}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,1,1,3}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,2,3,3,3,6}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001632
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 29%
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 29%
Values
{{1,2}}
=> [2,1] => [1,2] => ([(0,1)],2)
=> 1
{{1},{2}}
=> [1,2] => [2,1] => ([],2)
=> ? = 0
{{1,2,3}}
=> [2,3,1] => [2,1,3] => ([(0,2),(1,2)],3)
=> 1
{{1,2},{3}}
=> [2,1,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,3}
{{1,3},{2}}
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
{{1},{2,3}}
=> [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,3}
{{1},{2},{3}}
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {0,0,3}
{{1,2,3,4}}
=> [2,3,4,1] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1,2,4},{3}}
=> [2,4,3,1] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
{{1,2},{3,4}}
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1,2},{3},{4}}
=> [2,1,3,4] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1,3,4},{2}}
=> [3,2,4,1] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
{{1,3},{2,4}}
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1,4},{2,3}}
=> [4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
{{1},{2,3,4}}
=> [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1},{2,3},{4}}
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1},{2},{3,4}}
=> [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1},{2},{3},{4}}
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> ? ∊ {0,0,0,1,2,3,3,3,6}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [4,1,3,2,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 0
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 0
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 0
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 0
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [5,1,3,2,4] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [5,4,3,2,6,1] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [5,4,3,6,1,2] => ([(0,5),(1,5),(2,5),(3,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [5,4,3,6,2,1] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [5,4,2,1,6,3] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [5,4,2,3,6,1] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [5,4,6,2,1,3] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [5,4,6,2,3,1] => ([(1,5),(2,5),(3,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [5,4,1,3,2,6] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,15}
{{1,2,4,5,6},{3}}
=> [2,4,3,5,6,1] => [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [5,3,1,2,6,4] => ([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6)
=> 1
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 0
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [5,3,2,6,1,4] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [5,3,1,6,2,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 0
{{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => [5,2,3,1,6,4] => ([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6)
=> 1
{{1,2,6},{3,4,5}}
=> [2,6,4,5,3,1] => [5,1,3,2,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> 2
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [5,1,3,4,2,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
{{1,2,5,6},{3},{4}}
=> [2,5,3,4,6,1] => [5,2,4,3,1,6] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [5,2,1,3,6,4] => ([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> 0
{{1,2,5},{3},{4,6}}
=> [2,5,3,6,1,4] => [5,2,4,1,6,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> 0
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 24%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 24%
Values
{{1,2}}
=> [2,1] => ([],2)
=> ([],2)
=> 0
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,3}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],3)
=> 0
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,3}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,3}
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],4)
=> 0
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,3,3,3,6}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],5)
=> 0
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10}
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => ([(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
{{1,2,5,6},{3},{4}}
=> [2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
{{1,2,6},{3,5},{4}}
=> [2,6,5,4,3,1] => ([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 3
{{1,2},{3},{4},{5,6}}
=> [2,1,3,4,6,5] => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1,3,4,6},{2,5}}
=> [3,5,4,6,2,1] => ([(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 2
{{1,3,4,6},{2},{5}}
=> [3,2,4,6,5,1] => ([(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
{{1,3,4},{2},{5},{6}}
=> [3,2,4,1,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 3
{{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => ([(1,5),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
{{1},{2,3,4,5},{6}}
=> [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
{{1,5},{2,3},{4},{6}}
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 2
{{1,5,6},{2,4},{3}}
=> [5,4,3,2,6,1] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1
{{1},{2,4},{3,5},{6}}
=> [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 3
{{1,5},{2,6},{3,4}}
=> [5,6,4,3,1,2] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => ([],6)
=> ([],6)
=> 0
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => ([(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 2
{{1},{2},{3,4,6},{5}}
=> [1,2,4,6,5,3] => ([(0,5),(4,2),(4,3),(5,1),(5,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1,5},{2,6},{3},{4}}
=> [5,6,3,4,1,2] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
{{1},{2,6},{3},{4,5}}
=> [1,6,3,5,4,2] => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1,2,3,4,6},{5,7}}
=> [2,3,4,6,7,1,5] => ([(0,6),(1,4),(3,2),(4,5),(5,3),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
{{1,2,3,7},{4},{5,6}}
=> [2,3,7,4,6,5,1] => ([(1,6),(5,3),(5,4),(6,2),(6,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2
{{1,2,4,6,7},{3,5}}
=> [2,4,5,6,3,7,1] => ([(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000455
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 24%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 24%
Values
{{1,2}}
=> [2,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 0 - 1
{{1},{2}}
=> [1,2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
{{1,2,3}}
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
{{1,2},{3}}
=> [2,1,3] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,3} - 1
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 0 - 1
{{1},{2,3}}
=> [1,3,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,3} - 1
{{1},{2},{3}}
=> [1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1,2,3},{4}}
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1,2,4},{3}}
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1,3,4},{2}}
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 0 - 1
{{1},{2,3,4}}
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,2,3,3,3,6} - 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 0 - 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,6,6,6,6,10} - 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,2},{3,4},{5},{6}}
=> [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,2},{3},{4,5},{6}}
=> [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,2},{3},{4},{5,6}}
=> [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,3,4,6},{2},{5}}
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,3,5},{2,4,6}}
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,3,5,6},{2},{4}}
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,3,5},{2},{4},{6}}
=> [3,2,5,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1},{2,3},{4},{5,6}}
=> [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,4},{2,5},{3,6}}
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1},{2,4,6},{3},{5}}
=> [1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,5},{2,6},{3,4}}
=> [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 0 - 1
{{1},{2},{3,4},{5,6}}
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
{{1,5},{2,6},{3},{4}}
=> [5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
{{1},{2},{3},{4},{5},{6}}
=> [1,2,3,4,5,6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!