searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000677
St000677: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 2
[1,3,2,4] => 2
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 2
[2,1,3,4] => 2
[2,1,4,3] => 3
[2,3,1,4] => 1
[2,3,4,1] => 2
[2,4,1,3] => 0
[2,4,3,1] => 3
[3,1,2,4] => 1
[3,1,4,2] => 4
[3,2,1,4] => 2
[3,2,4,1] => 3
[3,4,1,2] => 1
[3,4,2,1] => 2
[4,1,2,3] => 2
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 2
[4,3,1,2] => 2
[4,3,2,1] => 3
[1,2,3,4,5] => 1
[1,2,3,5,4] => 2
[1,2,4,3,5] => 2
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 3
[1,3,4,2,5] => 1
[1,3,4,5,2] => 2
[1,3,5,2,4] => 0
[1,3,5,4,2] => 3
[1,4,2,3,5] => 1
[1,4,2,5,3] => 4
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 1
[1,4,5,3,2] => 2
Description
The standardized bi-alternating inversion number of a permutation.
The bi-alternating inversion number $i(\pi)$ is $\sum_{1\leq y < x\leq n} (-1)^{y+x} \mathrm{sgn}(\pi(x)-\pi(y))$, see Section 3.1 of [1].
It takes values in between $-\lfloor\frac n2\rfloor^2$ and $\lfloor\frac n2\rfloor^2$, and $i(\pi)+\lfloor\frac n2\rfloor^2$ is even, so we standardize it to $(i(\pi)+\lfloor\frac n2\rfloor^2)/2$.
For odd $n$ the bi-alternating inversion is invariant under rotation, that is, conjugation with the long cycle.
Matching statistic: St001645
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 50%
Values
[1,2] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 4 = 1 + 3
[2,1] => [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 0 + 3
[1,2,3] => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1} + 3
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1} + 3
[2,1,3] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1} + 3
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1} + 3
[3,1,2] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1} + 3
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[1,2,3,4] => [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 2 + 3
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 2 + 3
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 2 + 3
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4} + 3
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 2 + 3
[1,2,3,4,5] => [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} + 3
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[2,3,5,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[2,4,5,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[2,5,4,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[3,4,5,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[3,5,4,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[4,1,5,3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[4,2,5,3,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[4,3,5,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[4,5,3,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[5,1,4,3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[5,2,4,3,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[5,3,4,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[5,4,3,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
[1,2,3,6,5,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,2,4,6,5,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,2,5,6,4,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,2,6,5,4,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,3,2,6,5,4] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,3,4,6,5,2] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,3,5,6,4,2] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,3,6,5,4,2] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,4,2,6,5,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,4,3,6,5,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,4,5,6,3,2] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,4,6,5,3,2] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,5,2,6,4,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,5,3,6,4,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,5,4,6,3,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,5,6,4,3,2] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,6,2,5,4,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,6,3,5,4,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,6,4,5,3,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[1,6,5,4,3,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[2,1,3,6,5,4] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[2,1,4,6,5,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
[2,1,5,6,4,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 4 + 3
Description
The pebbling number of a connected graph.
Matching statistic: St001875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 20%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
[2,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
[1,2,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1}
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1}
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1}
[2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[3,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1}
[1,2,3,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[1,2,4,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[1,3,2,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[1,4,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[1,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[2,1,3,4] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[2,3,1,4] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,4,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,3,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[3,1,2,4] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[4,1,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[4,2,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[4,2,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[4,3,1,2] => [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[4,3,2,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4}
[1,2,3,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,5,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,4,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,5,1] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,3,1] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,5,2,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,5,3,1,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[5,2,3,1,4] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,2,4,1,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,4,2] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,4,1,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,2,4,5,1,6] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,4,6,1,5] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,5,4,1,6] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,5,6,1,4] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,6,4,1,5] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,6,5,1,4] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1,5,6] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1,6,5] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,5,1,6] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,4,2,6,1,5] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,5,2,1,4,6] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,1,6,4] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,4,1,6] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,5,2,6,1,4] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,6,2,1,4,5] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,6,2,1,5,4] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,6,2,4,1,5] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,6,2,5,1,4] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,3,5,1,6] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,6,1,5] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,3,1,6] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,6,1,3] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,6,3,1,5] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,6,5,1,3] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2,5,6] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2,6,5] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,5,2,6] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,5,6,2] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,6,2,5] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,6,5,2] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,1,2,6] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,1,6,2] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,6,1,2] => [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,3,6,1,2,5] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000264
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],2)
=> ([],2)
=> ? ∊ {0,1}
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[1,2,3] => ([],3)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1}
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1}
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1}
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,1,1}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,1,1}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1}
[1,2,3,4] => ([],4)
=> ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,3,6,2,5,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,6,4,2,5] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,4,2,6,5,3] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,3,6,2,5] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,5,2,4,6,3] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,5,3,2,6,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,5,3,6,4] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,3,6,4,1,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[2,4,6,3,1,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[2,5,1,4,3,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[2,5,1,4,6,3] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St000510
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000510: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000510: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => [-1,-2] => []
=> ? = 0
[2,1] => [2,1] => [-2,-1] => [2]
=> 1
[1,2,3] => [1,2,3] => [-1,-2,-3] => []
=> ? ∊ {0,0,0}
[1,3,2] => [1,3,2] => [-1,-3,-2] => [2]
=> 1
[2,1,3] => [2,1,3] => [-2,-1,-3] => [2]
=> 1
[2,3,1] => [2,3,1] => [-2,-3,-1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [-3,-1,-2] => []
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [-3,-2,-1] => [2]
=> 1
[1,2,3,4] => [1,2,3,4] => [-1,-2,-3,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,2,4,3] => [1,2,4,3] => [-1,-2,-4,-3] => [2]
=> 1
[1,3,2,4] => [1,3,2,4] => [-1,-3,-2,-4] => [2]
=> 1
[1,3,4,2] => [1,3,4,2] => [-1,-3,-4,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,2,3] => [1,4,2,3] => [-1,-4,-2,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,3,2] => [1,4,3,2] => [-1,-4,-3,-2] => [2]
=> 1
[2,1,3,4] => [2,1,3,4] => [-2,-1,-3,-4] => [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [-2,-1,-4,-3] => [2,2]
=> 2
[2,3,1,4] => [2,3,1,4] => [-2,-3,-1,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[2,3,4,1] => [2,3,4,1] => [-2,-3,-4,-1] => [4]
=> 2
[2,4,1,3] => [2,4,1,3] => [-2,-4,-1,-3] => [4]
=> 2
[2,4,3,1] => [2,4,3,1] => [-2,-4,-3,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,2,4] => [3,1,2,4] => [-3,-1,-2,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,4,2] => [3,1,4,2] => [-3,-1,-4,-2] => [4]
=> 2
[3,2,1,4] => [3,2,1,4] => [-3,-2,-1,-4] => [2]
=> 1
[3,2,4,1] => [3,2,4,1] => [-3,-2,-4,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,4,1,2] => [3,4,1,2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,1] => [3,4,2,1] => [-3,-4,-2,-1] => [4]
=> 2
[4,1,2,3] => [4,1,2,3] => [-4,-1,-2,-3] => [4]
=> 2
[4,1,3,2] => [4,1,3,2] => [-4,-1,-3,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,1,3] => [4,2,1,3] => [-4,-2,-1,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,3,1] => [4,2,3,1] => [-4,-2,-3,-1] => [2]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,-3,-1,-2] => [4]
=> 2
[4,3,2,1] => [4,3,2,1] => [-4,-3,-2,-1] => [2,2]
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => [-1,-2,-3,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,5,4] => [-1,-2,-3,-5,-4] => [2]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [-1,-2,-4,-3,-5] => [2]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-1,-2,-4,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [-1,-2,-5,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => [1,2,5,4,3] => [-1,-2,-5,-4,-3] => [2]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [-1,-3,-2,-4,-5] => [2]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [-1,-3,-2,-5,-4] => [2,2]
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => [-1,-3,-4,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => [1,3,4,5,2] => [-1,-3,-4,-5,-2] => [4]
=> 2
[1,3,5,2,4] => [1,3,5,2,4] => [-1,-3,-5,-2,-4] => [4]
=> 2
[1,3,5,4,2] => [1,3,5,4,2] => [-1,-3,-5,-4,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => [1,4,2,3,5] => [-1,-4,-2,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => [1,4,2,5,3] => [-1,-4,-2,-5,-3] => [4]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [-1,-4,-3,-2,-5] => [2]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [-1,-4,-3,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => [1,4,5,2,3] => [-1,-4,-5,-2,-3] => [2,2]
=> 2
[1,4,5,3,2] => [1,4,5,3,2] => [-1,-4,-5,-3,-2] => [4]
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [-1,-5,-2,-3,-4] => [4]
=> 2
[1,5,2,4,3] => [1,5,2,4,3] => [-1,-5,-2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => [1,5,3,2,4] => [-1,-5,-3,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => [1,5,3,4,2] => [-1,-5,-3,-4,-2] => [2]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-1,-5,-4,-2,-3] => [4]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [-1,-5,-4,-3,-2] => [2,2]
=> 2
[2,1,3,4,5] => [2,1,3,4,5] => [-2,-1,-3,-4,-5] => [2]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [-2,-1,-3,-5,-4] => [2,2]
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [-2,-1,-4,-3,-5] => [2,2]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-2,-1,-4,-5,-3] => [2]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [-2,-1,-5,-3,-4] => [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [-2,-1,-5,-4,-3] => [2,2]
=> 2
[2,3,1,4,5] => [2,3,1,4,5] => [-2,-3,-1,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,5,4] => [2,3,1,5,4] => [-2,-3,-1,-5,-4] => [2]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [-2,-3,-4,-1,-5] => [4]
=> 2
[2,3,4,5,1] => [2,3,4,5,1] => [-2,-3,-4,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,1,4] => [2,3,5,1,4] => [-2,-3,-5,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,4,1] => [2,3,5,4,1] => [-2,-3,-5,-4,-1] => [4]
=> 2
[2,4,1,3,5] => [2,4,1,3,5] => [-2,-4,-1,-3,-5] => [4]
=> 2
[2,4,1,5,3] => [2,4,1,5,3] => [-2,-4,-1,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1,5] => [2,4,3,1,5] => [-2,-4,-3,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,5,1] => [2,4,3,5,1] => [-2,-4,-3,-5,-1] => [4]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [-2,-4,-5,-1,-3] => [2]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [-2,-4,-5,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,-1,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [-2,-5,-1,-4,-3] => [4]
=> 2
[2,5,3,1,4] => [2,5,3,1,4] => [-2,-5,-3,-1,-4] => [4]
=> 2
[2,5,3,4,1] => [2,5,3,4,1] => [-2,-5,-3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [-2,-5,-4,-1,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [-2,-5,-4,-3,-1] => [2]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [-3,-1,-2,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,5,4] => [3,1,2,5,4] => [-3,-1,-2,-5,-4] => [2]
=> 1
[3,1,4,5,2] => [3,1,4,5,2] => [-3,-1,-4,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,5,2,4] => [3,1,5,2,4] => [-3,-1,-5,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1,5] => [3,2,4,1,5] => [-3,-2,-4,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,5,4,1] => [3,2,5,4,1] => [-3,-2,-5,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,5,1] => [3,4,2,5,1] => [-3,-4,-2,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,5,1,2] => [3,4,5,1,2] => [-3,-4,-5,-1,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,-5,-2,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,4,2,1] => [3,5,4,2,1] => [-3,-5,-4,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,5,3] => [4,1,2,5,3] => [-4,-1,-2,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2,5] => [4,1,3,2,5] => [-4,-1,-3,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,5,3,2] => [4,1,5,3,2] => [-4,-1,-5,-3,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3,5] => [4,2,1,3,5] => [-4,-2,-1,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,5,1] => [4,2,3,5,1] => [-4,-2,-3,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,5,2] => [4,3,1,5,2] => [-4,-3,-1,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,5,2,1] => [4,3,5,2,1] => [-4,-3,-5,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,1,2,3] => [4,5,1,2,3] => [-4,-5,-1,-2,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [-4,-5,-2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[5,1,2,3,4] => [5,1,2,3,4] => [-5,-1,-2,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
Description
The number of invariant oriented cycles when acting with a permutation of given cycle type.
Matching statistic: St000681
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000681: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 30%
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000681: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 30%
Values
[1,2] => [1,2] => [-1,-2] => []
=> ? = 0
[2,1] => [2,1] => [-2,-1] => [2]
=> 1
[1,2,3] => [1,2,3] => [-1,-2,-3] => []
=> ? ∊ {0,0,0}
[1,3,2] => [1,3,2] => [-1,-3,-2] => [2]
=> 1
[2,1,3] => [2,1,3] => [-2,-1,-3] => [2]
=> 1
[2,3,1] => [2,3,1] => [-2,-3,-1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [-3,-1,-2] => []
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [-3,-2,-1] => [2]
=> 1
[1,2,3,4] => [1,2,3,4] => [-1,-2,-3,-4] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[1,2,4,3] => [1,2,4,3] => [-1,-2,-4,-3] => [2]
=> 1
[1,3,2,4] => [1,3,2,4] => [-1,-3,-2,-4] => [2]
=> 1
[1,3,4,2] => [1,3,4,2] => [-1,-3,-4,-2] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[1,4,2,3] => [1,4,2,3] => [-1,-4,-2,-3] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[1,4,3,2] => [1,4,3,2] => [-1,-4,-3,-2] => [2]
=> 1
[2,1,3,4] => [2,1,3,4] => [-2,-1,-3,-4] => [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [-2,-1,-4,-3] => [2,2]
=> 2
[2,3,1,4] => [2,3,1,4] => [-2,-3,-1,-4] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[2,3,4,1] => [2,3,4,1] => [-2,-3,-4,-1] => [4]
=> 3
[2,4,1,3] => [2,4,1,3] => [-2,-4,-1,-3] => [4]
=> 3
[2,4,3,1] => [2,4,3,1] => [-2,-4,-3,-1] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[3,1,2,4] => [3,1,2,4] => [-3,-1,-2,-4] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[3,1,4,2] => [3,1,4,2] => [-3,-1,-4,-2] => [4]
=> 3
[3,2,1,4] => [3,2,1,4] => [-3,-2,-1,-4] => [2]
=> 1
[3,2,4,1] => [3,2,4,1] => [-3,-2,-4,-1] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[3,4,1,2] => [3,4,1,2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,1] => [3,4,2,1] => [-3,-4,-2,-1] => [4]
=> 3
[4,1,2,3] => [4,1,2,3] => [-4,-1,-2,-3] => [4]
=> 3
[4,1,3,2] => [4,1,3,2] => [-4,-1,-3,-2] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[4,2,1,3] => [4,2,1,3] => [-4,-2,-1,-3] => []
=> ? ∊ {0,2,2,2,2,2,2,2,4}
[4,2,3,1] => [4,2,3,1] => [-4,-2,-3,-1] => [2]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,-3,-1,-2] => [4]
=> 3
[4,3,2,1] => [4,3,2,1] => [-4,-3,-2,-1] => [2,2]
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => [-1,-2,-3,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,5,4] => [-1,-2,-3,-5,-4] => [2]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [-1,-2,-4,-3,-5] => [2]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-1,-2,-4,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [-1,-2,-5,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,2,5,4,3] => [1,2,5,4,3] => [-1,-2,-5,-4,-3] => [2]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [-1,-3,-2,-4,-5] => [2]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [-1,-3,-2,-5,-4] => [2,2]
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => [-1,-3,-4,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,3,4,5,2] => [1,3,4,5,2] => [-1,-3,-4,-5,-2] => [4]
=> 3
[1,3,5,2,4] => [1,3,5,2,4] => [-1,-3,-5,-2,-4] => [4]
=> 3
[1,3,5,4,2] => [1,3,5,4,2] => [-1,-3,-5,-4,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,4,2,3,5] => [1,4,2,3,5] => [-1,-4,-2,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,4,2,5,3] => [1,4,2,5,3] => [-1,-4,-2,-5,-3] => [4]
=> 3
[1,4,3,2,5] => [1,4,3,2,5] => [-1,-4,-3,-2,-5] => [2]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [-1,-4,-3,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,4,5,2,3] => [1,4,5,2,3] => [-1,-4,-5,-2,-3] => [2,2]
=> 2
[1,4,5,3,2] => [1,4,5,3,2] => [-1,-4,-5,-3,-2] => [4]
=> 3
[1,5,2,3,4] => [1,5,2,3,4] => [-1,-5,-2,-3,-4] => [4]
=> 3
[1,5,2,4,3] => [1,5,2,4,3] => [-1,-5,-2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,5,3,2,4] => [1,5,3,2,4] => [-1,-5,-3,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[1,5,3,4,2] => [1,5,3,4,2] => [-1,-5,-3,-4,-2] => [2]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-1,-5,-4,-2,-3] => [4]
=> 3
[1,5,4,3,2] => [1,5,4,3,2] => [-1,-5,-4,-3,-2] => [2,2]
=> 2
[2,1,3,4,5] => [2,1,3,4,5] => [-2,-1,-3,-4,-5] => [2]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [-2,-1,-3,-5,-4] => [2,2]
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [-2,-1,-4,-3,-5] => [2,2]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-2,-1,-4,-5,-3] => [2]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [-2,-1,-5,-3,-4] => [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [-2,-1,-5,-4,-3] => [2,2]
=> 2
[2,3,1,4,5] => [2,3,1,4,5] => [-2,-3,-1,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,3,1,5,4] => [2,3,1,5,4] => [-2,-3,-1,-5,-4] => [2]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [-2,-3,-4,-1,-5] => [4]
=> 3
[2,3,4,5,1] => [2,3,4,5,1] => [-2,-3,-4,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,3,5,1,4] => [2,3,5,1,4] => [-2,-3,-5,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,3,5,4,1] => [2,3,5,4,1] => [-2,-3,-5,-4,-1] => [4]
=> 3
[2,4,1,3,5] => [2,4,1,3,5] => [-2,-4,-1,-3,-5] => [4]
=> 3
[2,4,1,5,3] => [2,4,1,5,3] => [-2,-4,-1,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,4,3,1,5] => [2,4,3,1,5] => [-2,-4,-3,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,4,3,5,1] => [2,4,3,5,1] => [-2,-4,-3,-5,-1] => [4]
=> 3
[2,4,5,1,3] => [2,4,5,1,3] => [-2,-4,-5,-1,-3] => [2]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [-2,-4,-5,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,-1,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [-2,-5,-1,-4,-3] => [4]
=> 3
[2,5,3,1,4] => [2,5,3,1,4] => [-2,-5,-3,-1,-4] => [4]
=> 3
[2,5,3,4,1] => [2,5,3,4,1] => [-2,-5,-3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [-2,-5,-4,-1,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [-2,-5,-4,-3,-1] => [2]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [-3,-1,-2,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,1,2,5,4] => [3,1,2,5,4] => [-3,-1,-2,-5,-4] => [2]
=> 1
[3,1,4,5,2] => [3,1,4,5,2] => [-3,-1,-4,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,1,5,2,4] => [3,1,5,2,4] => [-3,-1,-5,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,2,4,1,5] => [3,2,4,1,5] => [-3,-2,-4,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,2,5,4,1] => [3,2,5,4,1] => [-3,-2,-5,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,4,2,5,1] => [3,4,2,5,1] => [-3,-4,-2,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,4,5,1,2] => [3,4,5,1,2] => [-3,-4,-5,-1,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,-5,-2,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[3,5,4,2,1] => [3,5,4,2,1] => [-3,-5,-4,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,1,2,5,3] => [4,1,2,5,3] => [-4,-1,-2,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,1,3,2,5] => [4,1,3,2,5] => [-4,-1,-3,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,1,5,3,2] => [4,1,5,3,2] => [-4,-1,-5,-3,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,2,1,3,5] => [4,2,1,3,5] => [-4,-2,-1,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,2,3,5,1] => [4,2,3,5,1] => [-4,-2,-3,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,3,1,5,2] => [4,3,1,5,2] => [-4,-3,-1,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,3,5,2,1] => [4,3,5,2,1] => [-4,-3,-5,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,5,1,2,3] => [4,5,1,2,3] => [-4,-5,-1,-2,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [-4,-5,-2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
[5,1,2,3,4] => [5,1,2,3,4] => [-5,-1,-2,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4}
Description
The Grundy value of Chomp on Ferrers diagrams.
Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1].
This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Matching statistic: St000698
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => [-1,-2] => []
=> ? = 0
[2,1] => [2,1] => [-2,-1] => [2]
=> 1
[1,2,3] => [1,2,3] => [-1,-2,-3] => []
=> ? ∊ {0,0,0}
[1,3,2] => [1,3,2] => [-1,-3,-2] => [2]
=> 1
[2,1,3] => [2,1,3] => [-2,-1,-3] => [2]
=> 1
[2,3,1] => [2,3,1] => [-2,-3,-1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [-3,-1,-2] => []
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [-3,-2,-1] => [2]
=> 1
[1,2,3,4] => [1,2,3,4] => [-1,-2,-3,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,2,4,3] => [1,2,4,3] => [-1,-2,-4,-3] => [2]
=> 1
[1,3,2,4] => [1,3,2,4] => [-1,-3,-2,-4] => [2]
=> 1
[1,3,4,2] => [1,3,4,2] => [-1,-3,-4,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,2,3] => [1,4,2,3] => [-1,-4,-2,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,3,2] => [1,4,3,2] => [-1,-4,-3,-2] => [2]
=> 1
[2,1,3,4] => [2,1,3,4] => [-2,-1,-3,-4] => [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [-2,-1,-4,-3] => [2,2]
=> 2
[2,3,1,4] => [2,3,1,4] => [-2,-3,-1,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[2,3,4,1] => [2,3,4,1] => [-2,-3,-4,-1] => [4]
=> 2
[2,4,1,3] => [2,4,1,3] => [-2,-4,-1,-3] => [4]
=> 2
[2,4,3,1] => [2,4,3,1] => [-2,-4,-3,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,2,4] => [3,1,2,4] => [-3,-1,-2,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,4,2] => [3,1,4,2] => [-3,-1,-4,-2] => [4]
=> 2
[3,2,1,4] => [3,2,1,4] => [-3,-2,-1,-4] => [2]
=> 1
[3,2,4,1] => [3,2,4,1] => [-3,-2,-4,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,4,1,2] => [3,4,1,2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,1] => [3,4,2,1] => [-3,-4,-2,-1] => [4]
=> 2
[4,1,2,3] => [4,1,2,3] => [-4,-1,-2,-3] => [4]
=> 2
[4,1,3,2] => [4,1,3,2] => [-4,-1,-3,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,1,3] => [4,2,1,3] => [-4,-2,-1,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,3,1] => [4,2,3,1] => [-4,-2,-3,-1] => [2]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,-3,-1,-2] => [4]
=> 2
[4,3,2,1] => [4,3,2,1] => [-4,-3,-2,-1] => [2,2]
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => [-1,-2,-3,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,5,4] => [-1,-2,-3,-5,-4] => [2]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [-1,-2,-4,-3,-5] => [2]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-1,-2,-4,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [-1,-2,-5,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => [1,2,5,4,3] => [-1,-2,-5,-4,-3] => [2]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [-1,-3,-2,-4,-5] => [2]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [-1,-3,-2,-5,-4] => [2,2]
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => [-1,-3,-4,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => [1,3,4,5,2] => [-1,-3,-4,-5,-2] => [4]
=> 2
[1,3,5,2,4] => [1,3,5,2,4] => [-1,-3,-5,-2,-4] => [4]
=> 2
[1,3,5,4,2] => [1,3,5,4,2] => [-1,-3,-5,-4,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => [1,4,2,3,5] => [-1,-4,-2,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => [1,4,2,5,3] => [-1,-4,-2,-5,-3] => [4]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [-1,-4,-3,-2,-5] => [2]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [-1,-4,-3,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => [1,4,5,2,3] => [-1,-4,-5,-2,-3] => [2,2]
=> 2
[1,4,5,3,2] => [1,4,5,3,2] => [-1,-4,-5,-3,-2] => [4]
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [-1,-5,-2,-3,-4] => [4]
=> 2
[1,5,2,4,3] => [1,5,2,4,3] => [-1,-5,-2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => [1,5,3,2,4] => [-1,-5,-3,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => [1,5,3,4,2] => [-1,-5,-3,-4,-2] => [2]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-1,-5,-4,-2,-3] => [4]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [-1,-5,-4,-3,-2] => [2,2]
=> 2
[2,1,3,4,5] => [2,1,3,4,5] => [-2,-1,-3,-4,-5] => [2]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [-2,-1,-3,-5,-4] => [2,2]
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [-2,-1,-4,-3,-5] => [2,2]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-2,-1,-4,-5,-3] => [2]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [-2,-1,-5,-3,-4] => [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [-2,-1,-5,-4,-3] => [2,2]
=> 2
[2,3,1,4,5] => [2,3,1,4,5] => [-2,-3,-1,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,5,4] => [2,3,1,5,4] => [-2,-3,-1,-5,-4] => [2]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [-2,-3,-4,-1,-5] => [4]
=> 2
[2,3,4,5,1] => [2,3,4,5,1] => [-2,-3,-4,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,1,4] => [2,3,5,1,4] => [-2,-3,-5,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,4,1] => [2,3,5,4,1] => [-2,-3,-5,-4,-1] => [4]
=> 2
[2,4,1,3,5] => [2,4,1,3,5] => [-2,-4,-1,-3,-5] => [4]
=> 2
[2,4,1,5,3] => [2,4,1,5,3] => [-2,-4,-1,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1,5] => [2,4,3,1,5] => [-2,-4,-3,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,5,1] => [2,4,3,5,1] => [-2,-4,-3,-5,-1] => [4]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [-2,-4,-5,-1,-3] => [2]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [-2,-4,-5,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,-1,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [-2,-5,-1,-4,-3] => [4]
=> 2
[2,5,3,1,4] => [2,5,3,1,4] => [-2,-5,-3,-1,-4] => [4]
=> 2
[2,5,3,4,1] => [2,5,3,4,1] => [-2,-5,-3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [-2,-5,-4,-1,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [-2,-5,-4,-3,-1] => [2]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [-3,-1,-2,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,5,4] => [3,1,2,5,4] => [-3,-1,-2,-5,-4] => [2]
=> 1
[3,1,4,5,2] => [3,1,4,5,2] => [-3,-1,-4,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,5,2,4] => [3,1,5,2,4] => [-3,-1,-5,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1,5] => [3,2,4,1,5] => [-3,-2,-4,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,5,4,1] => [3,2,5,4,1] => [-3,-2,-5,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,5,1] => [3,4,2,5,1] => [-3,-4,-2,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,5,1,2] => [3,4,5,1,2] => [-3,-4,-5,-1,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,-5,-2,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,4,2,1] => [3,5,4,2,1] => [-3,-5,-4,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,5,3] => [4,1,2,5,3] => [-4,-1,-2,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2,5] => [4,1,3,2,5] => [-4,-1,-3,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,5,3,2] => [4,1,5,3,2] => [-4,-1,-5,-3,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3,5] => [4,2,1,3,5] => [-4,-2,-1,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,5,1] => [4,2,3,5,1] => [-4,-2,-3,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,5,2] => [4,3,1,5,2] => [-4,-3,-1,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,5,2,1] => [4,3,5,2,1] => [-4,-3,-5,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,1,2,3] => [4,5,1,2,3] => [-4,-5,-1,-2,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [-4,-5,-2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[5,1,2,3,4] => [5,1,2,3,4] => [-5,-1,-2,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Matching statistic: St000934
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => [-1,-2] => []
=> ? = 0
[2,1] => [2,1] => [-2,-1] => [2]
=> 1
[1,2,3] => [1,2,3] => [-1,-2,-3] => []
=> ? ∊ {0,0,0}
[1,3,2] => [1,3,2] => [-1,-3,-2] => [2]
=> 1
[2,1,3] => [2,1,3] => [-2,-1,-3] => [2]
=> 1
[2,3,1] => [2,3,1] => [-2,-3,-1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [-3,-1,-2] => []
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [-3,-2,-1] => [2]
=> 1
[1,2,3,4] => [1,2,3,4] => [-1,-2,-3,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,2,4,3] => [1,2,4,3] => [-1,-2,-4,-3] => [2]
=> 1
[1,3,2,4] => [1,3,2,4] => [-1,-3,-2,-4] => [2]
=> 1
[1,3,4,2] => [1,3,4,2] => [-1,-3,-4,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,2,3] => [1,4,2,3] => [-1,-4,-2,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,3,2] => [1,4,3,2] => [-1,-4,-3,-2] => [2]
=> 1
[2,1,3,4] => [2,1,3,4] => [-2,-1,-3,-4] => [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [-2,-1,-4,-3] => [2,2]
=> 2
[2,3,1,4] => [2,3,1,4] => [-2,-3,-1,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[2,3,4,1] => [2,3,4,1] => [-2,-3,-4,-1] => [4]
=> 2
[2,4,1,3] => [2,4,1,3] => [-2,-4,-1,-3] => [4]
=> 2
[2,4,3,1] => [2,4,3,1] => [-2,-4,-3,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,2,4] => [3,1,2,4] => [-3,-1,-2,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,4,2] => [3,1,4,2] => [-3,-1,-4,-2] => [4]
=> 2
[3,2,1,4] => [3,2,1,4] => [-3,-2,-1,-4] => [2]
=> 1
[3,2,4,1] => [3,2,4,1] => [-3,-2,-4,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,4,1,2] => [3,4,1,2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,1] => [3,4,2,1] => [-3,-4,-2,-1] => [4]
=> 2
[4,1,2,3] => [4,1,2,3] => [-4,-1,-2,-3] => [4]
=> 2
[4,1,3,2] => [4,1,3,2] => [-4,-1,-3,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,1,3] => [4,2,1,3] => [-4,-2,-1,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,3,1] => [4,2,3,1] => [-4,-2,-3,-1] => [2]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,-3,-1,-2] => [4]
=> 2
[4,3,2,1] => [4,3,2,1] => [-4,-3,-2,-1] => [2,2]
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => [-1,-2,-3,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,5,4] => [-1,-2,-3,-5,-4] => [2]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [-1,-2,-4,-3,-5] => [2]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-1,-2,-4,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [-1,-2,-5,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => [1,2,5,4,3] => [-1,-2,-5,-4,-3] => [2]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [-1,-3,-2,-4,-5] => [2]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [-1,-3,-2,-5,-4] => [2,2]
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => [-1,-3,-4,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => [1,3,4,5,2] => [-1,-3,-4,-5,-2] => [4]
=> 2
[1,3,5,2,4] => [1,3,5,2,4] => [-1,-3,-5,-2,-4] => [4]
=> 2
[1,3,5,4,2] => [1,3,5,4,2] => [-1,-3,-5,-4,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => [1,4,2,3,5] => [-1,-4,-2,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => [1,4,2,5,3] => [-1,-4,-2,-5,-3] => [4]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [-1,-4,-3,-2,-5] => [2]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [-1,-4,-3,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => [1,4,5,2,3] => [-1,-4,-5,-2,-3] => [2,2]
=> 2
[1,4,5,3,2] => [1,4,5,3,2] => [-1,-4,-5,-3,-2] => [4]
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [-1,-5,-2,-3,-4] => [4]
=> 2
[1,5,2,4,3] => [1,5,2,4,3] => [-1,-5,-2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => [1,5,3,2,4] => [-1,-5,-3,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => [1,5,3,4,2] => [-1,-5,-3,-4,-2] => [2]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-1,-5,-4,-2,-3] => [4]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [-1,-5,-4,-3,-2] => [2,2]
=> 2
[2,1,3,4,5] => [2,1,3,4,5] => [-2,-1,-3,-4,-5] => [2]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [-2,-1,-3,-5,-4] => [2,2]
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [-2,-1,-4,-3,-5] => [2,2]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-2,-1,-4,-5,-3] => [2]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [-2,-1,-5,-3,-4] => [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [-2,-1,-5,-4,-3] => [2,2]
=> 2
[2,3,1,4,5] => [2,3,1,4,5] => [-2,-3,-1,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,5,4] => [2,3,1,5,4] => [-2,-3,-1,-5,-4] => [2]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [-2,-3,-4,-1,-5] => [4]
=> 2
[2,3,4,5,1] => [2,3,4,5,1] => [-2,-3,-4,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,1,4] => [2,3,5,1,4] => [-2,-3,-5,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,4,1] => [2,3,5,4,1] => [-2,-3,-5,-4,-1] => [4]
=> 2
[2,4,1,3,5] => [2,4,1,3,5] => [-2,-4,-1,-3,-5] => [4]
=> 2
[2,4,1,5,3] => [2,4,1,5,3] => [-2,-4,-1,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1,5] => [2,4,3,1,5] => [-2,-4,-3,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,5,1] => [2,4,3,5,1] => [-2,-4,-3,-5,-1] => [4]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [-2,-4,-5,-1,-3] => [2]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [-2,-4,-5,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,-1,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [-2,-5,-1,-4,-3] => [4]
=> 2
[2,5,3,1,4] => [2,5,3,1,4] => [-2,-5,-3,-1,-4] => [4]
=> 2
[2,5,3,4,1] => [2,5,3,4,1] => [-2,-5,-3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [-2,-5,-4,-1,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [-2,-5,-4,-3,-1] => [2]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [-3,-1,-2,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,5,4] => [3,1,2,5,4] => [-3,-1,-2,-5,-4] => [2]
=> 1
[3,1,4,5,2] => [3,1,4,5,2] => [-3,-1,-4,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,5,2,4] => [3,1,5,2,4] => [-3,-1,-5,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1,5] => [3,2,4,1,5] => [-3,-2,-4,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,5,4,1] => [3,2,5,4,1] => [-3,-2,-5,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,5,1] => [3,4,2,5,1] => [-3,-4,-2,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,5,1,2] => [3,4,5,1,2] => [-3,-4,-5,-1,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,-5,-2,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,4,2,1] => [3,5,4,2,1] => [-3,-5,-4,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,5,3] => [4,1,2,5,3] => [-4,-1,-2,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2,5] => [4,1,3,2,5] => [-4,-1,-3,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,5,3,2] => [4,1,5,3,2] => [-4,-1,-5,-3,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3,5] => [4,2,1,3,5] => [-4,-2,-1,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,5,1] => [4,2,3,5,1] => [-4,-2,-3,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,5,2] => [4,3,1,5,2] => [-4,-3,-1,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,5,2,1] => [4,3,5,2,1] => [-4,-3,-5,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,1,2,3] => [4,5,1,2,3] => [-4,-5,-1,-2,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [-4,-5,-2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[5,1,2,3,4] => [5,1,2,3,4] => [-5,-1,-2,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
Description
The 2-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
Matching statistic: St000939
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 30%
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 30%
Values
[1,2] => [1,2] => [-1,-2] => []
=> ? = 0
[2,1] => [2,1] => [-2,-1] => [2]
=> 1
[1,2,3] => [1,2,3] => [-1,-2,-3] => []
=> ? ∊ {0,0,0}
[1,3,2] => [1,3,2] => [-1,-3,-2] => [2]
=> 1
[2,1,3] => [2,1,3] => [-2,-1,-3] => [2]
=> 1
[2,3,1] => [2,3,1] => [-2,-3,-1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [-3,-1,-2] => []
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [-3,-2,-1] => [2]
=> 1
[1,2,3,4] => [1,2,3,4] => [-1,-2,-3,-4] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[1,2,4,3] => [1,2,4,3] => [-1,-2,-4,-3] => [2]
=> 1
[1,3,2,4] => [1,3,2,4] => [-1,-3,-2,-4] => [2]
=> 1
[1,3,4,2] => [1,3,4,2] => [-1,-3,-4,-2] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[1,4,2,3] => [1,4,2,3] => [-1,-4,-2,-3] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[1,4,3,2] => [1,4,3,2] => [-1,-4,-3,-2] => [2]
=> 1
[2,1,3,4] => [2,1,3,4] => [-2,-1,-3,-4] => [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [-2,-1,-4,-3] => [2,2]
=> 3
[2,3,1,4] => [2,3,1,4] => [-2,-3,-1,-4] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[2,3,4,1] => [2,3,4,1] => [-2,-3,-4,-1] => [4]
=> 2
[2,4,1,3] => [2,4,1,3] => [-2,-4,-1,-3] => [4]
=> 2
[2,4,3,1] => [2,4,3,1] => [-2,-4,-3,-1] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[3,1,2,4] => [3,1,2,4] => [-3,-1,-2,-4] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[3,1,4,2] => [3,1,4,2] => [-3,-1,-4,-2] => [4]
=> 2
[3,2,1,4] => [3,2,1,4] => [-3,-2,-1,-4] => [2]
=> 1
[3,2,4,1] => [3,2,4,1] => [-3,-2,-4,-1] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[3,4,1,2] => [3,4,1,2] => [-3,-4,-1,-2] => [2,2]
=> 3
[3,4,2,1] => [3,4,2,1] => [-3,-4,-2,-1] => [4]
=> 2
[4,1,2,3] => [4,1,2,3] => [-4,-1,-2,-3] => [4]
=> 2
[4,1,3,2] => [4,1,3,2] => [-4,-1,-3,-2] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[4,2,1,3] => [4,2,1,3] => [-4,-2,-1,-3] => []
=> ? ∊ {0,2,2,2,2,3,3,3,4}
[4,2,3,1] => [4,2,3,1] => [-4,-2,-3,-1] => [2]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,-3,-1,-2] => [4]
=> 2
[4,3,2,1] => [4,3,2,1] => [-4,-3,-2,-1] => [2,2]
=> 3
[1,2,3,4,5] => [1,2,3,4,5] => [-1,-2,-3,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,5,4] => [-1,-2,-3,-5,-4] => [2]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [-1,-2,-4,-3,-5] => [2]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-1,-2,-4,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [-1,-2,-5,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => [1,2,5,4,3] => [-1,-2,-5,-4,-3] => [2]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [-1,-3,-2,-4,-5] => [2]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [-1,-3,-2,-5,-4] => [2,2]
=> 3
[1,3,4,2,5] => [1,3,4,2,5] => [-1,-3,-4,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => [1,3,4,5,2] => [-1,-3,-4,-5,-2] => [4]
=> 2
[1,3,5,2,4] => [1,3,5,2,4] => [-1,-3,-5,-2,-4] => [4]
=> 2
[1,3,5,4,2] => [1,3,5,4,2] => [-1,-3,-5,-4,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => [1,4,2,3,5] => [-1,-4,-2,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => [1,4,2,5,3] => [-1,-4,-2,-5,-3] => [4]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [-1,-4,-3,-2,-5] => [2]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [-1,-4,-3,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => [1,4,5,2,3] => [-1,-4,-5,-2,-3] => [2,2]
=> 3
[1,4,5,3,2] => [1,4,5,3,2] => [-1,-4,-5,-3,-2] => [4]
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [-1,-5,-2,-3,-4] => [4]
=> 2
[1,5,2,4,3] => [1,5,2,4,3] => [-1,-5,-2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => [1,5,3,2,4] => [-1,-5,-3,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => [1,5,3,4,2] => [-1,-5,-3,-4,-2] => [2]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-1,-5,-4,-2,-3] => [4]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [-1,-5,-4,-3,-2] => [2,2]
=> 3
[2,1,3,4,5] => [2,1,3,4,5] => [-2,-1,-3,-4,-5] => [2]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [-2,-1,-3,-5,-4] => [2,2]
=> 3
[2,1,4,3,5] => [2,1,4,3,5] => [-2,-1,-4,-3,-5] => [2,2]
=> 3
[2,1,4,5,3] => [2,1,4,5,3] => [-2,-1,-4,-5,-3] => [2]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [-2,-1,-5,-3,-4] => [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [-2,-1,-5,-4,-3] => [2,2]
=> 3
[2,3,1,4,5] => [2,3,1,4,5] => [-2,-3,-1,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,5,4] => [2,3,1,5,4] => [-2,-3,-1,-5,-4] => [2]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [-2,-3,-4,-1,-5] => [4]
=> 2
[2,3,4,5,1] => [2,3,4,5,1] => [-2,-3,-4,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,1,4] => [2,3,5,1,4] => [-2,-3,-5,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,4,1] => [2,3,5,4,1] => [-2,-3,-5,-4,-1] => [4]
=> 2
[2,4,1,3,5] => [2,4,1,3,5] => [-2,-4,-1,-3,-5] => [4]
=> 2
[2,4,1,5,3] => [2,4,1,5,3] => [-2,-4,-1,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1,5] => [2,4,3,1,5] => [-2,-4,-3,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,5,1] => [2,4,3,5,1] => [-2,-4,-3,-5,-1] => [4]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [-2,-4,-5,-1,-3] => [2]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [-2,-4,-5,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,-1,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [-2,-5,-1,-4,-3] => [4]
=> 2
[2,5,3,1,4] => [2,5,3,1,4] => [-2,-5,-3,-1,-4] => [4]
=> 2
[2,5,3,4,1] => [2,5,3,4,1] => [-2,-5,-3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [-2,-5,-4,-1,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [-2,-5,-4,-3,-1] => [2]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [-3,-1,-2,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,5,4] => [3,1,2,5,4] => [-3,-1,-2,-5,-4] => [2]
=> 1
[3,1,4,5,2] => [3,1,4,5,2] => [-3,-1,-4,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,5,2,4] => [3,1,5,2,4] => [-3,-1,-5,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1,5] => [3,2,4,1,5] => [-3,-2,-4,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,5,4,1] => [3,2,5,4,1] => [-3,-2,-5,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,5,1] => [3,4,2,5,1] => [-3,-4,-2,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,5,1,2] => [3,4,5,1,2] => [-3,-4,-5,-1,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,-5,-2,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,4,2,1] => [3,5,4,2,1] => [-3,-5,-4,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,5,3] => [4,1,2,5,3] => [-4,-1,-2,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2,5] => [4,1,3,2,5] => [-4,-1,-3,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,5,3,2] => [4,1,5,3,2] => [-4,-1,-5,-3,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3,5] => [4,2,1,3,5] => [-4,-2,-1,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,5,1] => [4,2,3,5,1] => [-4,-2,-3,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,5,2] => [4,3,1,5,2] => [-4,-3,-1,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,5,2,1] => [4,3,5,2,1] => [-4,-3,-5,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,1,2,3] => [4,5,1,2,3] => [-4,-5,-1,-2,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [-4,-5,-2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[5,1,2,3,4] => [5,1,2,3,4] => [-5,-1,-2,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
Description
The number of characters of the symmetric group whose value on the partition is positive.
Matching statistic: St001601
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St001601: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Mp00244: Signed permutations —bar⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St001601: Integer partitions ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => [-1,-2] => []
=> ? = 0
[2,1] => [2,1] => [-2,-1] => [2]
=> 1
[1,2,3] => [1,2,3] => [-1,-2,-3] => []
=> ? ∊ {0,0,0}
[1,3,2] => [1,3,2] => [-1,-3,-2] => [2]
=> 1
[2,1,3] => [2,1,3] => [-2,-1,-3] => [2]
=> 1
[2,3,1] => [2,3,1] => [-2,-3,-1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [-3,-1,-2] => []
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [-3,-2,-1] => [2]
=> 1
[1,2,3,4] => [1,2,3,4] => [-1,-2,-3,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,2,4,3] => [1,2,4,3] => [-1,-2,-4,-3] => [2]
=> 1
[1,3,2,4] => [1,3,2,4] => [-1,-3,-2,-4] => [2]
=> 1
[1,3,4,2] => [1,3,4,2] => [-1,-3,-4,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,2,3] => [1,4,2,3] => [-1,-4,-2,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[1,4,3,2] => [1,4,3,2] => [-1,-4,-3,-2] => [2]
=> 1
[2,1,3,4] => [2,1,3,4] => [-2,-1,-3,-4] => [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [-2,-1,-4,-3] => [2,2]
=> 2
[2,3,1,4] => [2,3,1,4] => [-2,-3,-1,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[2,3,4,1] => [2,3,4,1] => [-2,-3,-4,-1] => [4]
=> 2
[2,4,1,3] => [2,4,1,3] => [-2,-4,-1,-3] => [4]
=> 2
[2,4,3,1] => [2,4,3,1] => [-2,-4,-3,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,2,4] => [3,1,2,4] => [-3,-1,-2,-4] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,1,4,2] => [3,1,4,2] => [-3,-1,-4,-2] => [4]
=> 2
[3,2,1,4] => [3,2,1,4] => [-3,-2,-1,-4] => [2]
=> 1
[3,2,4,1] => [3,2,4,1] => [-3,-2,-4,-1] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[3,4,1,2] => [3,4,1,2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,1] => [3,4,2,1] => [-3,-4,-2,-1] => [4]
=> 2
[4,1,2,3] => [4,1,2,3] => [-4,-1,-2,-3] => [4]
=> 2
[4,1,3,2] => [4,1,3,2] => [-4,-1,-3,-2] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,1,3] => [4,2,1,3] => [-4,-2,-1,-3] => []
=> ? ∊ {0,2,3,3,3,3,3,3,4}
[4,2,3,1] => [4,2,3,1] => [-4,-2,-3,-1] => [2]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,-3,-1,-2] => [4]
=> 2
[4,3,2,1] => [4,3,2,1] => [-4,-3,-2,-1] => [2,2]
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => [-1,-2,-3,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,5,4] => [-1,-2,-3,-5,-4] => [2]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [-1,-2,-4,-3,-5] => [2]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-1,-2,-4,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [-1,-2,-5,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,2,5,4,3] => [1,2,5,4,3] => [-1,-2,-5,-4,-3] => [2]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [-1,-3,-2,-4,-5] => [2]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [-1,-3,-2,-5,-4] => [2,2]
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => [-1,-3,-4,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,5,2] => [1,3,4,5,2] => [-1,-3,-4,-5,-2] => [4]
=> 2
[1,3,5,2,4] => [1,3,5,2,4] => [-1,-3,-5,-2,-4] => [4]
=> 2
[1,3,5,4,2] => [1,3,5,4,2] => [-1,-3,-5,-4,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3,5] => [1,4,2,3,5] => [-1,-4,-2,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,5,3] => [1,4,2,5,3] => [-1,-4,-2,-5,-3] => [4]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [-1,-4,-3,-2,-5] => [2]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [-1,-4,-3,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,4,5,2,3] => [1,4,5,2,3] => [-1,-4,-5,-2,-3] => [2,2]
=> 2
[1,4,5,3,2] => [1,4,5,3,2] => [-1,-4,-5,-3,-2] => [4]
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [-1,-5,-2,-3,-4] => [4]
=> 2
[1,5,2,4,3] => [1,5,2,4,3] => [-1,-5,-2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,2,4] => [1,5,3,2,4] => [-1,-5,-3,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[1,5,3,4,2] => [1,5,3,4,2] => [-1,-5,-3,-4,-2] => [2]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-1,-5,-4,-2,-3] => [4]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [-1,-5,-4,-3,-2] => [2,2]
=> 2
[2,1,3,4,5] => [2,1,3,4,5] => [-2,-1,-3,-4,-5] => [2]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [-2,-1,-3,-5,-4] => [2,2]
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [-2,-1,-4,-3,-5] => [2,2]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-2,-1,-4,-5,-3] => [2]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [-2,-1,-5,-3,-4] => [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [-2,-1,-5,-4,-3] => [2,2]
=> 2
[2,3,1,4,5] => [2,3,1,4,5] => [-2,-3,-1,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,5,4] => [2,3,1,5,4] => [-2,-3,-1,-5,-4] => [2]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [-2,-3,-4,-1,-5] => [4]
=> 2
[2,3,4,5,1] => [2,3,4,5,1] => [-2,-3,-4,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,1,4] => [2,3,5,1,4] => [-2,-3,-5,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,3,5,4,1] => [2,3,5,4,1] => [-2,-3,-5,-4,-1] => [4]
=> 2
[2,4,1,3,5] => [2,4,1,3,5] => [-2,-4,-1,-3,-5] => [4]
=> 2
[2,4,1,5,3] => [2,4,1,5,3] => [-2,-4,-1,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1,5] => [2,4,3,1,5] => [-2,-4,-3,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,5,1] => [2,4,3,5,1] => [-2,-4,-3,-5,-1] => [4]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [-2,-4,-5,-1,-3] => [2]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [-2,-4,-5,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,-1,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [-2,-5,-1,-4,-3] => [4]
=> 2
[2,5,3,1,4] => [2,5,3,1,4] => [-2,-5,-3,-1,-4] => [4]
=> 2
[2,5,3,4,1] => [2,5,3,4,1] => [-2,-5,-3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [-2,-5,-4,-1,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [-2,-5,-4,-3,-1] => [2]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [-3,-1,-2,-4,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,5,4] => [3,1,2,5,4] => [-3,-1,-2,-5,-4] => [2]
=> 1
[3,1,4,5,2] => [3,1,4,5,2] => [-3,-1,-4,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,1,5,2,4] => [3,1,5,2,4] => [-3,-1,-5,-2,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1,5] => [3,2,4,1,5] => [-3,-2,-4,-1,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,2,5,4,1] => [3,2,5,4,1] => [-3,-2,-5,-4,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,5,1] => [3,4,2,5,1] => [-3,-4,-2,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,4,5,1,2] => [3,4,5,1,2] => [-3,-4,-5,-1,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,-5,-2,-1,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[3,5,4,2,1] => [3,5,4,2,1] => [-3,-5,-4,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,5,3] => [4,1,2,5,3] => [-4,-1,-2,-5,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2,5] => [4,1,3,2,5] => [-4,-1,-3,-2,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,1,5,3,2] => [4,1,5,3,2] => [-4,-1,-5,-3,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3,5] => [4,2,1,3,5] => [-4,-2,-1,-3,-5] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,5,1] => [4,2,3,5,1] => [-4,-2,-3,-5,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,5,2] => [4,3,1,5,2] => [-4,-3,-1,-5,-2] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,3,5,2,1] => [4,3,5,2,1] => [-4,-3,-5,-2,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,1,2,3] => [4,5,1,2,3] => [-4,-5,-1,-2,-3] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [-4,-5,-2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
[5,1,2,3,4] => [5,1,2,3,4] => [-5,-1,-2,-3,-4] => []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001060The distinguishing index of a graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000454The largest eigenvalue of a graph if it is integral.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!