Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000747
St000747: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 2
{{1,2,4},{3}}
=> 3
{{1,2},{3,4}}
=> 1
{{1,2},{3},{4}}
=> 2
{{1,3,4},{2}}
=> 3
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 3
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> 3
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 3
{{1,2,3,5},{4}}
=> 4
{{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> 4
{{1,2,4,5},{3}}
=> 4
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 5
{{1,2,5},{3,4}}
=> 3
{{1,2},{3,4,5}}
=> 1
{{1,2},{3,4},{5}}
=> 3
{{1,2,5},{3},{4}}
=> 5
{{1,2},{3,5},{4}}
=> 5
{{1,2},{3},{4,5}}
=> 2
{{1,2},{3},{4},{5}}
=> 3
{{1,3,4,5},{2}}
=> 4
{{1,3,4},{2,5}}
=> 3
{{1,3,4},{2},{5}}
=> 5
{{1,3,5},{2,4}}
=> 3
{{1,3},{2,4,5}}
=> 2
{{1,3},{2,4},{5}}
=> 4
{{1,3,5},{2},{4}}
=> 5
{{1,3},{2,5},{4}}
=> 6
{{1,3},{2},{4,5}}
=> 3
{{1,3},{2},{4},{5}}
=> 4
{{1,4,5},{2,3}}
=> 3
{{1,4},{2,3,5}}
=> 2
{{1,4},{2,3},{5}}
=> 4
Description
A variant of the major index of a set partition. For a set partition $P = B_1|\dots|B_k$ in canonical form (this is, each block is ordered increasingly and all blocks are ordered by their smallest element), one defined $\pi = \pi(P)$ to be the permutation obtained by writing the letters in all blocks as one-line notation and $\omega = \omega(P) = (\omega_1,\ldots,\omega_k)$ be to be the integer composition of the ordered block sizes. This statistic is then given in [1, (2.7)] by $$\operatorname{maj}(\pi) + \sum_{max\ B_i < min\ B_{i+1}} (\omega_1 + \cdots + \omega_i - i).$$
Mp00080: Set partitions to permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00011: Binary trees to graphGraphs
St000422: Graphs ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 23%
Values
{{1,2}}
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> 2 = 0 + 2
{{1},{2}}
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> 2 = 0 + 2
{{1,2,3}}
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,2} + 2
{{1,2},{3}}
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,2} + 2
{{1,3},{2}}
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,2} + 2
{{1},{2,3}}
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,2} + 2
{{1},{2},{3}}
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,2} + 2
{{1,2,3,4}}
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,2,3},{4}}
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,2,4},{3}}
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,2},{3,4}}
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,3,4},{2}}
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,3},{2,4}}
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,4},{2,3}}
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1},{2,3,4}}
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,4},{2},{3}}
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,3,3} + 2
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6} + 2
{{1},{2,3,5,6},{4}}
=> [1,3,5,4,6,2] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,3,5},{4,6}}
=> [1,3,5,6,2,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,3,5},{4},{6}}
=> [1,3,5,4,2,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,3},{4,5,6}}
=> [1,3,2,5,6,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1,6},{2},{3,4,5}}
=> [6,2,4,5,3,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,5,6},{3},{4}}
=> [1,5,3,4,6,2] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,5},{3},{4,6}}
=> [1,5,3,6,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1},{2,5},{3},{4},{6}}
=> [1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
{{1,2,5,6,7},{3,4}}
=> [2,5,4,3,6,7,1] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,6},{3,4,7}}
=> [2,5,4,7,6,1,3] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,6},{3,4},{7}}
=> [2,5,4,3,6,1,7] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,7},{3,4,6}}
=> [2,5,4,6,7,3,1] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,4,6,7}}
=> [2,5,4,6,1,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,4,6},{7}}
=> [2,5,4,6,1,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,7},{3,4},{6}}
=> [2,5,4,3,7,6,1] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,4,7},{6}}
=> [2,5,4,7,1,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,4},{6,7}}
=> [2,5,4,3,1,7,6] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,4},{6},{7}}
=> [2,5,4,3,1,6,7] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,6,7},{3},{4}}
=> [2,5,3,4,6,7,1] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,6},{3,7},{4}}
=> [2,5,7,4,6,1,3] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,6},{3},{4,7}}
=> [2,5,3,7,6,1,4] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,6},{3},{4},{7}}
=> [2,5,3,4,6,1,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,7},{3,6},{4}}
=> [2,5,6,4,7,3,1] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,6,7},{4}}
=> [2,5,6,4,1,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,6},{4,7}}
=> [2,5,6,7,1,3,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,6},{4},{7}}
=> [2,5,6,4,1,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,7},{3},{4,6}}
=> [2,5,3,6,7,4,1] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,7},{4,6}}
=> [2,5,7,6,1,4,3] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3},{4,6,7}}
=> [2,5,3,6,1,7,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3},{4,6},{7}}
=> [2,5,3,6,1,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5,7},{3},{4},{6}}
=> [2,5,3,4,7,6,1] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3,7},{4},{6}}
=> [2,5,7,4,1,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3},{4,7},{6}}
=> [2,5,3,7,1,6,4] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3},{4},{6,7}}
=> [2,5,3,4,1,7,6] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2,5},{3},{4},{6},{7}}
=> [2,5,3,4,1,6,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5,6,7},{4}}
=> [2,1,5,4,6,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5,6},{4,7}}
=> [2,1,5,7,6,3,4] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5,6},{4},{7}}
=> [2,1,5,4,6,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5,7},{4,6}}
=> [2,1,5,6,7,4,3] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5},{4,6,7}}
=> [2,1,5,6,3,7,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5},{4,6},{7}}
=> [2,1,5,6,3,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5,7},{4},{6}}
=> [2,1,5,4,7,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5},{4,7},{6}}
=> [2,1,5,7,3,6,4] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5},{4},{6,7}}
=> [2,1,5,4,3,7,6] => [[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
{{1,2},{3,5},{4},{6},{7}}
=> [2,1,5,4,3,6,7] => [[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St001880
Mp00080: Set partitions to permutationPermutations
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 46%
Values
{{1,2}}
=> [2,1] => [1] => ([],1)
=> ? ∊ {0,0}
{{1},{2}}
=> [1,2] => [1] => ([],1)
=> ? ∊ {0,0}
{{1,2,3}}
=> [2,3,1] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,2}
{{1,2},{3}}
=> [2,1,3] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,2}
{{1,3},{2}}
=> [3,2,1] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,2}
{{1},{2,3}}
=> [1,3,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,2}
{{1},{2},{3}}
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,2}
{{1,2,3,4}}
=> [2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,2,4},{3}}
=> [2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1},{2,3,4}}
=> [1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3}
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,1] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
{{1},{2,3,4},{5,6}}
=> [1,3,4,2,6,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
{{1},{2,3,4},{5},{6}}
=> [1,3,4,2,5,6] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
{{1},{2,3},{4},{5,6}}
=> [1,3,2,4,6,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
{{1},{2,3},{4},{5},{6}}
=> [1,3,2,4,5,6] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
{{1},{2},{3,4},{5,6}}
=> [1,2,4,3,6,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
{{1},{2},{3,4},{5},{6}}
=> [1,2,4,3,5,6] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
{{1},{2},{3},{4},{5,6}}
=> [1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
{{1},{2},{3},{4},{5},{6}}
=> [1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
{{1},{2,3,4,5},{6,7}}
=> [1,3,4,5,2,7,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
{{1},{2,3,4,5},{6},{7}}
=> [1,3,4,5,2,6,7] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
{{1},{2,3,4},{5},{6,7}}
=> [1,3,4,2,5,7,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
{{1},{2,3,4},{5},{6},{7}}
=> [1,3,4,2,5,6,7] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
{{1},{2,3,5},{4},{6,7}}
=> [1,3,5,4,2,7,6] => [1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
{{1},{2,3,5},{4},{6},{7}}
=> [1,3,5,4,2,6,7] => [1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
{{1},{2,3},{4},{5},{6,7}}
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
{{1},{2,3},{4},{5},{6},{7}}
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
{{1},{2,4,5},{3},{6,7}}
=> [1,4,3,5,2,7,6] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1},{2,4,5},{3},{6},{7}}
=> [1,4,3,5,2,6,7] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
{{1},{2,4},{3,5},{6,7}}
=> [1,4,5,2,3,7,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 4
{{1},{2,4},{3,5},{6},{7}}
=> [1,4,5,2,3,6,7] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 4
{{1},{2,4},{3},{5},{6,7}}
=> [1,4,3,2,5,7,6] => [1,4,3,2,5,6] => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 2
{{1},{2,4},{3},{5},{6},{7}}
=> [1,4,3,2,5,6,7] => [1,4,3,2,5,6] => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 2
{{1},{2,5},{3,4},{6,7}}
=> [1,5,4,3,2,7,6] => [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
{{1},{2,5},{3,4},{6},{7}}
=> [1,5,4,3,2,6,7] => [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
{{1},{2},{3,4,5},{6,7}}
=> [1,2,4,5,3,7,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
{{1},{2},{3,4,5},{6},{7}}
=> [1,2,4,5,3,6,7] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
{{1},{2},{3,4},{5},{6,7}}
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
{{1},{2},{3,4},{5},{6},{7}}
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
{{1},{2,5},{3},{4},{6,7}}
=> [1,5,3,4,2,7,6] => [1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
{{1},{2,5},{3},{4},{6},{7}}
=> [1,5,3,4,2,6,7] => [1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
{{1},{2},{3,5},{4},{6,7}}
=> [1,2,5,4,3,7,6] => [1,2,5,4,3,6] => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 2
{{1},{2},{3,5},{4},{6},{7}}
=> [1,2,5,4,3,6,7] => [1,2,5,4,3,6] => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 2
{{1},{2},{3},{4,5},{6,7}}
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
{{1},{2},{3},{4,5},{6},{7}}
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
{{1},{2},{3},{4},{5},{6,7}}
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
{{1},{2},{3},{4},{5},{6},{7}}
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.