searching the database
Your data matches 98 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000755
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> [1]
=> 1
[1,0,1,0]
=> [1,1] => [1,1]
=> [2]
=> 2
[1,1,0,0]
=> [2] => [2]
=> [1,1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [3]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [2,1]
=> 2
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [2,1]
=> 2
[1,1,0,1,0,0]
=> [3] => [3]
=> [1,1,1]
=> 1
[1,1,1,0,0,0]
=> [3] => [3]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [4]
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [3,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [3,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [2,1,1]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [3,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [2,1,1]
=> 2
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [3,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [3,2]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2,2,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2,2,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [3,1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2,2,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [2,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [2,1,1,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St001217
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001217: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001217: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [2,1] => [2]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [2,3,1] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [3,1,2] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,6,2,4,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,2,6,3,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [4,6,1,2,3,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,6,4] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [5,1,6,2,3,4] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [6,1,2,3,4,5] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,4,6,1,7,5] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,7,1,5,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,3,5,1,6,7,4] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,5,1,6,4,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,5,6,7,1,4] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,4,1,5,6,7,3] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,4,1,5,6,3,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,4,1,5,7,3,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,4,5,6,1,7,3] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,4,5,6,1,3,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,4,5,7,1,3,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,6,3,7,5] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,4,1,7,3,5,6] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [2,5,1,3,6,7,4] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [2,5,1,3,6,4,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3} - 1
Description
The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1.
Matching statistic: St001878
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 47% ●values known / values provided: 47%●distinct values known / distinct values provided: 67%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 47% ●values known / values provided: 47%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [[1],[]]
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => [[2],[]]
=> ([],1)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,2,2}
[1,0,1,1,0,0]
=> [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,2,2}
[1,1,0,0,1,0]
=> [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,1,1,2,2}
[1,1,0,1,0,0]
=> [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,1,1,2,2}
[1,1,1,0,0,0]
=> [3] => [[3],[]]
=> ([],1)
=> ? ∊ {1,1,1,2,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
=> [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
=> [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
=> [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
=> [4] => [[4],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001603
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 1
[1,0,1,0]
=> [2,1] => [1,1]
=> [1]
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => [2]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,0,1,1,0,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,0,0,1,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,0,1,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,1,0,0,0]
=> [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,2,2}
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,6,3,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,1,2,6,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [3,5,1,6,2,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,1,2,3] => [3,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,7,1,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,3,1,6,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,6,1,7,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,6,7,3,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5,7] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,4,7,3,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,4,1,5,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,4,1,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,4,5,1,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,4,5,1,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,4,5,7,1,3,6] => [4,3]
=> [3]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001604
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 1
[1,0,1,0]
=> [2,1] => [1,1]
=> [1]
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => [2]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,0,1,1,0,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,0,0,1,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,0,1,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,1,0,0,0]
=> [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,2,2}
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,6,3,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,1,2,6,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [3,5,1,6,2,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,1,2,3] => [3,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,7,1,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,3,1,6,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,6,1,7,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,6,7,3,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5,7] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,4,7,3,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,4,1,5,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,4,1,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,4,5,1,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,4,5,1,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,4,5,7,1,3,6] => [4,3]
=> [3]
=> 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001605
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 1
[1,0,1,0]
=> [2,1] => [1,1]
=> [1]
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => [2]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,0,1,1,0,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,0,0,1,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,0,1,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,2,2}
[1,1,1,0,0,0]
=> [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,2,2}
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,6,3,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,1,2,6,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [3,5,1,6,2,4] => [3,3]
=> [3]
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => [3,3]
=> [3]
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,1,2,3] => [3,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,7,1,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,3,1,6,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,6,1,7,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,6,7,3,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5,7] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,4,7,3,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,4,1,5,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,4,1,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,4,5,1,3,7,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,4,5,1,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,4,5,7,1,3,6] => [4,3]
=> [3]
=> 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001568
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1,0]
=> [1,0]
=> []
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1,2,2}
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1,2,2}
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1,2,2}
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1,2,2}
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1,2,2}
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> 1
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St000706
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000706: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000706: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => [1,0]
=> []
=> ? = 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1]
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,2,2}
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> ? ∊ {1,2,2}
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,2,2}
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 1
Description
The product of the factorials of the multiplicities of an integer partition.
Matching statistic: St000993
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => [1,0]
=> []
=> ? = 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1]
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,2,2}
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> ? ∊ {1,2,2}
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,2,2}
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000906
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000906: Posets ⟶ ℤResult quality: 23% ●values known / values provided: 23%●distinct values known / distinct values provided: 67%
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000906: Posets ⟶ ℤResult quality: 23% ●values known / values provided: 23%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 1
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 1
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [5,7,3,6,4,2,1] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [5,3,7,6,4,2,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [4,7,3,6,5,2,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [4,3,7,6,5,2,1] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [6,7,4,5,2,3,1] => ([(1,6),(2,5),(3,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [6,4,7,5,2,3,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [5,7,4,6,2,3,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => [5,7,6,2,4,3,1] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,2,7,5] => [5,7,2,6,4,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,6,7,2,5] => [5,2,7,6,4,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,2,4,7,6] => [6,7,4,2,5,3,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,6,4,7] => [7,4,6,2,5,3,1] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,2,6,7,4] => [4,7,6,2,5,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,7,4,6] => [6,4,7,2,5,3,1] => ([(1,5),(2,5),(2,6),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,2,4,7] => [7,4,2,6,5,3,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,5,6,2,7,4] => [4,7,2,6,5,3,1] => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,5,6,7,2,4] => [4,2,7,6,5,3,1] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [6,4,2,7,5,3,1] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,2,4,7,5] => [5,7,4,2,6,3,1] => ([(1,6),(2,5),(2,6),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6] => [6,7,3,5,2,4,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,2,5,7,3,6] => [6,3,7,5,2,4,1] => ([(1,6),(2,5),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,7,5] => [5,7,3,6,2,4,1] => ([(1,5),(2,5),(2,6),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,4,5,2,6,3,7] => [7,3,6,2,5,4,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,2,6,7,3] => [3,7,6,2,5,4,1] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,2,3,7] => [7,3,2,6,5,4,1] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,5,6,2,7,3] => [3,7,2,6,5,4,1] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,2,3] => [3,2,7,6,5,4,1] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [5,3,7,2,6,4,1] => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [5,3,2,7,6,4,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => [4,7,3,6,2,5,1] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [6,7,4,5,3,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,4,6] => [6,4,7,5,3,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,4,7,5] => [5,7,4,6,3,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [6,7,5,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [7,5,6,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [5,7,6,3,4,1,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [6,7,3,5,4,1,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,3,6] => [6,3,7,5,4,1,2] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,7] => [7,5,3,6,4,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,7,5] => [5,7,3,6,4,1,2] => ([(0,5),(1,4),(1,6),(2,3),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,1,4,6,7,3,5] => [5,3,7,6,4,1,2] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4,7] => [7,4,6,3,5,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,3,6,7,4] => [4,7,6,3,5,1,2] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,1,5,6,3,7,4] => [4,7,3,6,5,1,2] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,3,4] => [4,3,7,6,5,1,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => [5,7,6,4,1,3,2] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => [6,7,4,5,1,3,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
Description
The length of the shortest maximal chain in a poset.
The following 88 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001481The minimal height of a peak of a Dyck path. St000674The number of hills of a Dyck path. St001322The size of a minimal independent dominating set in a graph. St000260The radius of a connected graph. St001339The irredundance number of a graph. St001172The number of 1-rises at odd height of a Dyck path. St000908The length of the shortest maximal antichain in a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000618The number of self-evacuating tableaux of given shape. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000781The number of proper colouring schemes of a Ferrers diagram. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000990The first ascent of a permutation. St000640The rank of the largest boolean interval in a poset. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000456The monochromatic index of a connected graph. St000310The minimal degree of a vertex of a graph. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000654The first descent of a permutation. St000989The number of final rises of a permutation. St001691The number of kings in a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000648The number of 2-excedences of a permutation. St000546The number of global descents of a permutation. St001545The second Elser number of a connected graph. St000633The size of the automorphism group of a poset. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000733The row containing the largest entry of a standard tableau. St000007The number of saliances of the permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001487The number of inner corners of a skew partition. St001569The maximal modular displacement of a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St000259The diameter of a connected graph. St000754The Grundy value for the game of removing nestings in a perfect matching. St000338The number of pixed points of a permutation. St000461The rix statistic of a permutation. St000352The Elizalde-Pak rank of a permutation. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St000054The first entry of the permutation. St000753The Grundy value for the game of Kayles on a binary word. St000873The aix statistic of a permutation. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001728The number of invisible descents of a permutation. St001948The number of augmented double ascents of a permutation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001118The acyclic chromatic index of a graph. St001820The size of the image of the pop stack sorting operator. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000764The number of strong records in an integer composition. St001964The interval resolution global dimension of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001846The number of elements which do not have a complement in the lattice. St000741The Colin de Verdière graph invariant. St001399The distinguishing number of a poset. St001330The hat guessing number of a graph. St001895The oddness of a signed permutation. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001557The number of inversions of the second entry of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000782The indicator function of whether a given perfect matching is an L & P matching. St001621The number of atoms of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!