searching the database
Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000922
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
St000922: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 1
1 => 1
00 => 2
01 => 1
10 => 1
11 => 2
000 => 3
001 => 2
010 => 2
011 => 2
100 => 2
101 => 2
110 => 2
111 => 3
0000 => 4
0001 => 3
0010 => 2
0011 => 2
0100 => 2
0101 => 3
0110 => 2
0111 => 3
1000 => 3
1001 => 2
1010 => 3
1011 => 2
1100 => 2
1101 => 2
1110 => 3
1111 => 4
00000 => 5
00001 => 4
00010 => 3
00011 => 3
00100 => 3
00101 => 3
00110 => 2
00111 => 3
01000 => 3
01001 => 3
01010 => 4
01011 => 3
01100 => 2
01101 => 3
01110 => 3
01111 => 4
10000 => 4
10001 => 3
10010 => 3
10011 => 2
Description
The minimal number such that all substrings of this length are unique.
Matching statistic: St001875
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 44%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 44%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
1 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
00 => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {1,1,2,2}
01 => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2}
10 => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2}
11 => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {1,1,2,2}
000 => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
001 => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
010 => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
011 => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
100 => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
101 => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
110 => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
111 => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3}
0000 => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0001 => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0011 => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0100 => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
0111 => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1000 => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1011 => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1100 => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1110 => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
1111 => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
00000 => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00001 => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00011 => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
00111 => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01000 => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01111 => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10000 => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
000110 => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
000111 => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
001001 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
001100 => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
001101 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
001110 => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
010010 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
010011 => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
011000 => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
011001 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
011011 => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
011100 => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
100011 => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
100100 => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
100110 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
100111 => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
101100 => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
101101 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
110001 => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
110010 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
110011 => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
110110 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
111000 => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
111001 => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
0000110 => [4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> 3
0000111 => [4,3] => [[6,4],[3]]
=> ([(0,2),(2,1)],3)
=> 3
0001000 => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
0001001 => [3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
0001100 => [3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
0001101 => [3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> ([(0,2),(2,1)],3)
=> 3
0001110 => [3,3,1] => [[5,5,3],[4,2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
0001111 => [3,4] => [[6,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
0010001 => [2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
0010010 => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
0010011 => [2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
0010110 => [2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
0011000 => [2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
0011001 => [2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> 6
0011010 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
0011011 => [2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
0011100 => [2,3,2] => [[5,4,2],[3,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
0011101 => [2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
0011110 => [2,4,1] => [[5,5,2],[4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
0100010 => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
0100011 => [1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
0100100 => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000923
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000923: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 67%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000923: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 67%
Values
0 => [2] => [1,1,0,0]
=> [2,1] => 2 = 1 + 1
1 => [1,1] => [1,0,1,0]
=> [1,2] => 2 = 1 + 1
00 => [3] => [1,1,1,0,0,0]
=> [3,2,1] => 3 = 2 + 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 2 = 1 + 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 2 = 1 + 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 3 = 2 + 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4 = 3 + 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3 = 2 + 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 3 = 2 + 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 3 = 2 + 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3 = 2 + 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3 = 2 + 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3 = 2 + 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4 = 3 + 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5 = 4 + 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 4 = 3 + 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3 = 2 + 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 3 = 2 + 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3 = 2 + 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4 = 3 + 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 3 = 2 + 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 4 = 3 + 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 4 = 3 + 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 3 = 2 + 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4 = 3 + 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3 = 2 + 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3 = 2 + 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3 = 2 + 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 4 = 3 + 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 5 = 4 + 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 6 = 5 + 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 5 = 4 + 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 4 = 3 + 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => 4 = 3 + 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 4 = 3 + 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => 4 = 3 + 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => 3 = 2 + 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => 4 = 3 + 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 4 = 3 + 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => 4 = 3 + 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 5 = 4 + 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 4 = 3 + 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => 3 = 2 + 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 4 = 3 + 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 4 = 3 + 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 5 = 4 + 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 5 = 4 + 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 4 = 3 + 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 4 = 3 + 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 3 = 2 + 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} + 1
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,5,4,3,2,1,8,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [6,5,4,3,2,1,7,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [5,4,3,2,1,8,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [5,4,3,2,1,7,6,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [5,4,3,2,1,6,8,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,4,3,2,1,6,7,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [4,3,2,1,8,7,6,5] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [4,3,2,1,7,6,5,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [4,3,2,1,6,5,8,7] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [4,3,2,1,6,5,7,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [4,3,2,1,5,8,7,6] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [4,3,2,1,5,7,6,8] => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7} + 1
Description
The minimal number with no two order isomorphic substrings of this length in a permutation.
For example, the length $3$ substrings of the permutation $12435$ are $124$, $243$ and $435$, whereas its length $2$ substrings are $12$, $24$, $43$ and $35$.
No two sequences among $124$, $243$ and $435$ are order isomorphic, but $12$ and $24$ are, so the statistic on $12435$ is $3$.
This is inspired by [[St000922]].
Matching statistic: St001091
Mp00262: Binary words —poset of factors⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001091: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001091: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 100%
Values
0 => ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
1 => ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
00 => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1
11 => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 2
000 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 3
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
111 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 3
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 4
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 3
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 3
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 3
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 3
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 3
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 3
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 4
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 5
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> [2,2,2,2,1,1]
=> 4
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> [4,3,2,2,1,1]
=> ? ∊ {2,2,2,2}
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> [6,4]
=> [2,2,2,2,1,1]
=> 4
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> [4,3,2,2,1,1]
=> ? ∊ {2,2,2,2}
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> [2,2,2,2,1,1]
=> 4
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> [2,2,2,2,1,1]
=> 4
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> [4,3,2,2,1,1]
=> ? ∊ {2,2,2,2}
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> [6,4]
=> [2,2,2,2,1,1]
=> 4
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [3,3,2,2,1,1]
=> 3
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> [4,3,2,2,1,1]
=> ? ∊ {2,2,2,2}
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
000111 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001011 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011001 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011011 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011100 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011101 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100010 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100011 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100101 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101000 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101001 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101100 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101110 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
110001 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
110011 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> [7,5,3,2]
=> [4,4,3,2,2,1,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of parts in an integer partition whose next smaller part has the same size.
In other words, this is the number of distinct parts subtracted from the number of all parts.
Matching statistic: St000145
Mp00262: Binary words —poset of factors⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000145: Integer partitions ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000145: Integer partitions ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 100%
Values
0 => ([(0,1)],2)
=> [2]
=> 1
1 => ([(0,1)],2)
=> [2]
=> 1
00 => ([(0,2),(2,1)],3)
=> [3]
=> 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
11 => ([(0,2),(2,1)],3)
=> [3]
=> 2
000 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
111 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 3
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> 2
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,3,1]
=> 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> [5,3]
=> 3
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> [5,3,1]
=> 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 3
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 3
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> [5,3,1]
=> 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> [5,3]
=> 3
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,3,1]
=> 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> [5,3,1]
=> 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 3
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 5
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> 4
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> [6,4]
=> 4
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> 4
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> 4
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> [6,4]
=> 4
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> [6,4,2,1]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> 4
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 5
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 6
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> [7,5]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
000111 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001011 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> [7,5,3]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> [7,5]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
011001 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> [7,5,3,2]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> [7,5,3,1]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 6
0000000 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> [8]
=> 7
1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> [8]
=> 7
00000000 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> [9]
=> 8
11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> [9]
=> 8
000000000 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> [10]
=> 9
111111111 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> [10]
=> 9
Description
The Dyson rank of a partition.
This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences $$p(5n+4) \equiv 0 \pmod 5$$ and $$p(7n+6) \equiv 0 \pmod 7.$$
Matching statistic: St001200
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 33%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 33%
Values
0 => [1] => [1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
1 => [1] => [1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
00 => [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1}
01 => [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
10 => [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
11 => [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1}
000 => [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2}
001 => [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
010 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
011 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
100 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
101 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
110 => [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
111 => [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2}
0000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2}
0001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
0011 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
0110 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
0111 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
1000 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
1001 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
1100 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
1110 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
1111 => [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2}
00000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00010 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00011 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00100 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00101 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00110 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
00111 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01000 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01011 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01100 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01101 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01110 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
01111 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10011 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10100 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10110 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
10111 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11000 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11001 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11010 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11011 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11100 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11101 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11110 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
11111 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5}
000000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000010 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000011 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000100 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000101 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000110 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
000111 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
001000 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
001001 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6}
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001879
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 56%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 56%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
1 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
00 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2}
01 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2}
10 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2}
11 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2}
000 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
001 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3}
010 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
011 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {2,2,3,3}
100 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {2,2,3,3}
101 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
110 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3}
111 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
0000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
0011 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
0100 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
0111 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1000 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
1011 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1100 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1110 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4}
1111 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
00000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
00001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
00011 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
00111 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01000 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
01111 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
10111 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11000 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11010 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11011 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11100 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11101 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11110 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5}
11111 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
000000 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
010101 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
101010 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
111111 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
0000000 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
0101010 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
1010101 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
1111111 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001646
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,8),(4,5),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ([(0,4),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,7),(6,7),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ([(0,4),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,7),(6,7),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,8),(4,5),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,4,4} - 1
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,9),(1,2),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,7),(1,8),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,9),(5,10),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,11),(5,6),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(0,11),(1,2),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,9),(6,10),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,12),(2,3),(2,6),(2,7),(2,8),(2,9),(2,11),(2,12),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,11),(5,6),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,7),(1,8),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,9),(5,10),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(0,9),(0,11),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,8),(2,10),(2,11),(3,6),(3,7),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,8),(5,10),(5,11),(6,7),(6,9),(6,10),(6,11),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(0,1),(0,4),(0,5),(0,8),(0,9),(1,4),(1,5),(1,8),(1,9),(2,3),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,7),(5,9),(6,7),(6,8),(7,8),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,12),(2,3),(2,6),(2,7),(2,8),(2,9),(2,11),(2,12),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(0,9),(0,11),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,8),(2,10),(2,11),(3,6),(3,7),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,8),(5,10),(5,11),(6,7),(6,9),(6,10),(6,11),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(0,7),(0,8),(0,9),(0,11),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,10),(2,11),(3,4),(3,6),(3,7),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,10),(4,11),(5,6),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,9),(1,2),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,9),(1,2),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(0,7),(0,8),(0,9),(0,11),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,10),(2,11),(3,4),(3,6),(3,7),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,10),(4,11),(5,6),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(0,9),(0,11),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,8),(2,10),(2,11),(3,6),(3,7),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,8),(5,10),(5,11),(6,7),(6,9),(6,10),(6,11),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,12),(2,3),(2,6),(2,7),(2,8),(2,9),(2,11),(2,12),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(0,1),(0,4),(0,5),(0,8),(0,9),(1,4),(1,5),(1,8),(1,9),(2,3),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,7),(5,9),(6,7),(6,8),(7,8),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(0,9),(0,11),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,8),(2,10),(2,11),(3,6),(3,7),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,8),(5,10),(5,11),(6,7),(6,9),(6,10),(6,11),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,7),(1,8),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,9),(5,10),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,11),(5,6),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,12),(2,3),(2,6),(2,7),(2,8),(2,9),(2,11),(2,12),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(0,11),(1,2),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,9),(6,10),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,11),(5,6),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,7),(1,8),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,9),(5,10),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,9),(1,2),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5} - 1
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ([(0,2),(0,3),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,10),(1,11),(2,4),(2,5),(2,6),(2,8),(2,9),(2,10),(3,4),(3,5),(3,7),(3,8),(3,9),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6} - 1
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ([(0,3),(0,5),(0,6),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(2,3),(2,4),(2,6),(2,7),(2,8),(2,9),(2,10),(2,13),(2,14),(3,4),(3,5),(3,6),(3,7),(3,11),(3,12),(3,13),(3,14),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(5,13),(5,14),(6,8),(6,9),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6} - 1
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,9),(2,10),(2,11),(2,12),(2,13),(2,14),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(5,14),(6,7),(6,8),(6,9),(6,11),(6,12),(6,13),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6} - 1
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ([(0,1),(0,3),(0,4),(0,5),(0,7),(0,8),(0,9),(0,11),(0,13),(0,14),(0,15),(1,4),(1,5),(1,6),(1,7),(1,10),(1,11),(1,12),(1,13),(1,14),(1,15),(2,3),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(2,13),(2,14),(2,15),(3,6),(3,7),(3,8),(3,9),(3,10),(3,12),(3,13),(3,14),(3,15),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(4,13),(4,14),(4,15),(5,7),(5,8),(5,9),(5,11),(5,12),(5,13),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,15),(12,13),(12,14),(13,14),(13,15),(14,15)],16)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6} - 1
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(0,5),(0,7),(1,6),(1,8),(2,9),(2,14),(3,4),(3,8),(3,13),(4,10),(4,15),(5,6),(5,11),(6,12),(7,11),(7,14),(8,12),(9,10),(9,15),(10,13),(10,14),(11,12),(11,15),(12,13),(13,15),(14,15)],16)
=> ([(0,4),(0,5),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,11),(1,12),(1,13),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(2,14),(2,15),(3,4),(3,6),(3,7),(3,10),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,7),(5,8),(5,9),(5,10),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(6,14),(6,15),(7,8),(7,9),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,15),(9,10),(9,11),(9,13),(9,15),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14),(13,15),(14,15)],16)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6} - 1
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,12),(1,13),(1,14),(1,15),(1,16),(2,4),(2,5),(2,7),(2,8),(2,10),(2,11),(2,12),(2,13),(2,14),(2,15),(2,16),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(3,15),(3,16),(4,5),(4,6),(4,7),(4,8),(4,9),(4,11),(4,13),(4,15),(4,16),(5,7),(5,8),(5,9),(5,10),(5,11),(5,13),(5,15),(5,16),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,16),(7,8),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,16),(10,11),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,14),(12,15),(12,16),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6} - 1
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
Description
The number of edges that can be added without increasing the maximal degree of a graph.
This statistic is (except for the degenerate case of two vertices) maximized by the star-graph on $n$ vertices, which has maximal degree $n-1$ and therefore has statistic $\binom{n-1}{2}$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!