Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000967
St000967: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 3
[1,0,1,0]
=> 4
[1,1,0,0]
=> 4
[1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0]
=> 5
[1,1,0,0,1,0]
=> 5
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 5
[1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,0,0]
=> 6
[1,0,1,1,0,0,1,0]
=> 6
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 4
[1,1,1,0,0,0,1,0]
=> 6
[1,1,1,0,0,1,0,0]
=> 4
[1,1,1,0,1,0,0,0]
=> 4
[1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,0]
=> 7
[1,0,1,0,1,0,1,1,0,0]
=> 7
[1,0,1,0,1,1,0,0,1,0]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 7
[1,0,1,1,0,0,1,0,1,0]
=> 7
[1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 7
[1,0,1,1,1,0,0,1,0,0]
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0,1,0]
=> 7
[1,1,0,0,1,0,1,1,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> 7
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000031: Permutations ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 3 - 2
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 4 - 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 2 = 4 - 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 5 - 2
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3 = 5 - 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3 = 5 - 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [5,4,1,6,3,2] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3 = 5 - 2
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 6 - 2
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 4 = 6 - 2
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 6 - 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,7,6,3,8,5,4] => ? ∊ {4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 6 - 2
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 6 - 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 4 = 6 - 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [5,4,1,6,3,2,8,7] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [7,6,1,5,4,8,3,2] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [7,6,5,4,1,8,3,2] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 6 - 2
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [7,6,1,8,5,4,3,2] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [6,5,2,1,8,7,4,3] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 7 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,9,8,5,10,7,6] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 7 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,7,6,3,8,5,4,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,9,8,3,7,6,10,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,9,8,7,6,3,10,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 7 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,9,8,3,10,7,6,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,8,7,4,3,10,9,6,5] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 7 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 7 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,9,8,5,10,7,6] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 7 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [5,4,1,6,3,2,8,7,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [5,4,1,6,3,2,10,9,8,7] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [7,6,1,5,4,8,3,2,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [9,8,1,5,4,7,6,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [9,8,7,6,1,5,4,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [7,6,5,4,1,8,3,2,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [9,8,1,7,6,5,4,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [8,7,4,1,9,6,5,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [9,8,7,6,5,4,1,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 7 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 7 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [7,6,1,8,5,4,3,2,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [9,8,1,7,6,10,5,4,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [9,8,7,6,1,10,5,4,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [6,5,2,1,8,7,4,3,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [9,8,1,6,5,2,10,7,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [8,7,2,1,6,5,10,9,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [8,7,6,5,2,1,10,9,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 7 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [9,8,1,10,7,6,5,4,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [8,7,2,1,10,9,6,5,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [7,6,3,2,1,10,9,8,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,11,10,7,12,9,8] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,9,8,5,10,7,6,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,11,10,5,9,8,12,7,6] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,11,10,9,8,5,12,7,6] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,11,10,5,12,9,8,7,6] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,10,9,6,5,12,11,8,7] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,11,10,7,12,9,8] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,7,6,3,8,5,4,10,9,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,7,6,3,8,5,4,12,11,10,9] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,9,8,3,7,6,10,5,4,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,11,10,3,7,6,9,8,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,11,10,9,8,3,7,6,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,9,8,7,6,3,10,5,4,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,11,10,3,9,8,7,6,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,10,9,6,3,11,8,7,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,11,10,9,8,7,6,3,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,9,8,3,10,7,6,5,4,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,11,10,3,9,8,12,7,6,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 8 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,12,11,10,9,8,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 8 - 2
Description
The number of cycles in the cycle decomposition of a permutation.
Matching statistic: St000337
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000337: Permutations ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 3 - 2
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 4 - 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 2 = 4 - 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 5 - 2
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3 = 5 - 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3 = 5 - 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [5,4,1,6,3,2] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3 = 5 - 2
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 6 - 2
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 4 = 6 - 2
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 6 - 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,7,6,3,8,5,4] => ? ∊ {4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 6 - 2
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 6 - 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 4 = 6 - 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [5,4,1,6,3,2,8,7] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [7,6,1,5,4,8,3,2] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [7,6,5,4,1,8,3,2] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 6 - 2
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [7,6,1,8,5,4,3,2] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [6,5,2,1,8,7,4,3] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 7 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,9,8,5,10,7,6] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 7 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,7,6,3,8,5,4,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,9,8,3,7,6,10,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,9,8,7,6,3,10,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 7 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,9,8,3,10,7,6,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,8,7,4,3,10,9,6,5] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 7 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 7 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,9,8,5,10,7,6] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 7 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [5,4,1,6,3,2,8,7,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [5,4,1,6,3,2,10,9,8,7] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [7,6,1,5,4,8,3,2,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [9,8,1,5,4,7,6,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [9,8,7,6,1,5,4,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [7,6,5,4,1,8,3,2,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [9,8,1,7,6,5,4,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [8,7,4,1,9,6,5,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [9,8,7,6,5,4,1,10,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 7 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 7 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [7,6,1,8,5,4,3,2,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [9,8,1,7,6,10,5,4,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [9,8,7,6,1,10,5,4,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [6,5,2,1,8,7,4,3,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [9,8,1,6,5,2,10,7,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [8,7,2,1,6,5,10,9,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [8,7,6,5,2,1,10,9,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 7 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [9,8,1,10,7,6,5,4,3,2] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [8,7,2,1,10,9,6,5,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [7,6,3,2,1,10,9,8,5,4] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,11,10,7,12,9,8] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,9,8,5,10,7,6,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,11,10,5,9,8,12,7,6] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,11,10,9,8,5,12,7,6] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,11,10,5,12,9,8,7,6] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,10,9,6,5,12,11,8,7] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,11,10,7,12,9,8] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,7,6,3,8,5,4,10,9,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,7,6,3,8,5,4,12,11,10,9] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,9,8,3,7,6,10,5,4,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,11,10,3,7,6,9,8,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,11,10,9,8,3,7,6,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,9,8,7,6,3,10,5,4,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,11,10,3,9,8,7,6,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,10,9,6,3,11,8,7,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,11,10,9,8,7,6,3,12,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,9,8,3,10,7,6,5,4,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,11,10,3,9,8,12,7,6,5,4] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 8 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,12,11,10,9,8,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 8 - 2
Description
The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. For a permutation $\sigma = p \tau_{1} \tau_{2} \cdots \tau_{k}$ in its hook factorization, [1] defines $$ \textrm{lec} \, \sigma = \sum_{1 \leq i \leq k} \textrm{inv} \, \tau_{i} \, ,$$ where $\textrm{inv} \, \tau_{i}$ is the number of inversions of $\tau_{i}$.
Matching statistic: St000703
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St000703: Permutations ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 3 - 2
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 4 - 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,3,2,1] => 2 = 4 - 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 5 - 2
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,5,4,3] => 3 = 5 - 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,3,2,1,6,5] => 3 = 5 - 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,5,3,4,2,1] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => 3 = 5 - 2
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 6 - 2
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,7,6,5] => 4 = 6 - 2
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 6 - 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,7,5,6,4,3] => ? ∊ {4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 6 - 2
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 6 - 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,3,2,1,8,7,6,5] => 4 = 6 - 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,5,3,7,2,6,4,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,7,3,6,5,4,2,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 6 - 2
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,5,7,4,2,6,3,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,7,6,4,5,3,2,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 7 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 7 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [2,1,10,7,5,9,4,8,6,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 7 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [2,1,10,7,9,6,4,8,5,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [2,1,10,9,8,6,7,5,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 7 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 7 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 7 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [8,5,3,7,2,6,4,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [10,5,3,7,2,9,4,8,6,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [10,5,3,9,2,8,7,6,4,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [10,7,3,6,9,4,2,8,5,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [10,9,3,8,6,5,7,4,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 7 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 7 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [8,5,7,4,2,6,3,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [10,5,7,4,2,9,3,8,6,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [10,5,9,4,2,8,7,6,3,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [8,7,6,4,5,3,2,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [10,7,6,4,9,3,2,8,5,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 7 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => [10,7,6,9,5,3,2,8,4,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,9,10,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,9,11,8,12,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,7,8,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,7,8,6,5,11,12,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,7,9,6,10,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,7,9,6,11,8,12,10,5] => [2,1,4,3,12,9,7,11,6,10,8,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,7,10,6,11,12,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,8,9,10,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,8,9,11,7,6,12,10,5] => [2,1,4,3,12,9,11,8,6,10,7,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,8,10,11,7,12,9,6,5] => [2,1,4,3,12,11,10,8,9,7,6,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,9,10,11,12,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,5,6,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,5,6,4,3,8,7,11,12,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,5,6,4,3,9,10,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,5,6,4,3,9,11,8,12,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,5,6,4,3,10,11,12,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,5,7,4,8,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,5,7,4,8,6,3,11,12,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,5,7,4,9,6,10,8,3,12,11] => [2,1,10,7,5,9,4,8,6,3,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,5,7,4,9,6,11,8,12,10,3] => [2,1,12,7,5,9,4,11,6,10,8,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,5,7,4,10,6,11,12,9,8,3] => [2,1,12,7,5,11,4,10,9,8,6,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,5,8,4,9,10,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,5,8,4,9,11,7,6,12,10,3] => [2,1,12,9,5,8,11,6,4,10,7,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,5,8,4,10,11,7,12,9,6,3] => [2,1,12,11,5,10,8,7,9,6,4,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,5,9,4,10,11,12,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,6,7,8,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,6,7,8,5,4,3,11,12,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,6,7,9,5,4,10,8,3,12,11] => [2,1,10,7,9,6,4,8,5,3,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,6,7,9,5,4,11,8,12,10,3] => [2,1,12,7,9,6,4,11,5,10,8,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,7,8,9,10,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 8 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [3,4,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [3,4,2,1,6,5,8,7,11,12,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 8 - 2
Description
The number of deficiencies of a permutation. This is defined as $$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$ The number of exceedances is [[St000155]].
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St000994: Permutations ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 3 - 2
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 4 - 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,3,2,1] => 2 = 4 - 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 5 - 2
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,5,4,3] => 3 = 5 - 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,3,2,1,6,5] => 3 = 5 - 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,5,3,4,2,1] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => 3 = 5 - 2
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 6 - 2
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,7,6,5] => 4 = 6 - 2
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 6 - 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,7,5,6,4,3] => ? ∊ {4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 6 - 2
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 6 - 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,3,2,1,8,7,6,5] => 4 = 6 - 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,5,3,7,2,6,4,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,7,3,6,5,4,2,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 6 - 2
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,5,7,4,2,6,3,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,7,6,4,5,3,2,1] => ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 7 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 7 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [2,1,10,7,5,9,4,8,6,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 7 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [2,1,10,7,9,6,4,8,5,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [2,1,10,9,8,6,7,5,4,3] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 7 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 7 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 7 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [8,5,3,7,2,6,4,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [10,5,3,7,2,9,4,8,6,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [10,5,3,9,2,8,7,6,4,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [10,7,3,6,9,4,2,8,5,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [10,9,3,8,6,5,7,4,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 7 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 7 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [8,5,7,4,2,6,3,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [10,5,7,4,2,9,3,8,6,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [10,5,9,4,2,8,7,6,3,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [8,7,6,4,5,3,2,1,10,9] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [10,7,6,4,9,3,2,8,5,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 7 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => [10,7,6,9,5,3,2,8,4,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,9,10,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,9,11,8,12,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,7,8,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,7,8,6,5,11,12,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,7,9,6,10,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,7,9,6,11,8,12,10,5] => [2,1,4,3,12,9,7,11,6,10,8,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,7,10,6,11,12,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,8,9,10,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 8 - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,8,9,11,7,6,12,10,5] => [2,1,4,3,12,9,11,8,6,10,7,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,8,10,11,7,12,9,6,5] => [2,1,4,3,12,11,10,8,9,7,6,5] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,9,10,11,12,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,5,6,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,5,6,4,3,8,7,11,12,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,5,6,4,3,9,10,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,5,6,4,3,9,11,8,12,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,5,6,4,3,10,11,12,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 8 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,5,7,4,8,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,5,7,4,8,6,3,11,12,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,5,7,4,9,6,10,8,3,12,11] => [2,1,10,7,5,9,4,8,6,3,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,5,7,4,9,6,11,8,12,10,3] => [2,1,12,7,5,9,4,11,6,10,8,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,5,7,4,10,6,11,12,9,8,3] => [2,1,12,7,5,11,4,10,9,8,6,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,5,8,4,9,10,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,5,8,4,9,11,7,6,12,10,3] => [2,1,12,9,5,8,11,6,4,10,7,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,5,8,4,10,11,7,12,9,6,3] => [2,1,12,11,5,10,8,7,9,6,4,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,5,9,4,10,11,12,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,6,7,8,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 8 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,6,7,8,5,4,3,11,12,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 8 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,6,7,9,5,4,10,8,3,12,11] => [2,1,10,7,9,6,4,8,5,3,12,11] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,6,7,9,5,4,11,8,12,10,3] => [2,1,12,7,9,6,4,11,5,10,8,3] => ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,7,8,9,10,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 8 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [3,4,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [3,4,2,1,6,5,8,7,11,12,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 8 - 2
Description
The number of cycle peaks and the number of cycle valleys of a permutation. A '''cycle peak''' of a permutation $\pi$ is an index $i$ such that $\pi^{-1}(i) < i > \pi(i)$. Analogously, a '''cycle valley''' is an index $i$ such that $\pi^{-1}(i) > i < \pi(i)$. Clearly, every cycle of $\pi$ contains as many peaks as valleys.
Mp00232: Dyck paths parallelogram posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001330: Graphs ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 67%
Values
[1,0]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 4 - 2
[1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 4 - 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 5 - 2
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 5 - 2
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 5 - 2
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 5 - 2
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 2
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 6 - 2
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 7 - 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 8 - 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00232: Dyck paths parallelogram posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000454: Graphs ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 67%
Values
[1,0]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 4 - 3
[1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 4 - 3
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 5 - 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 5 - 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 5 - 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 5 - 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 3
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 3
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 6 - 3
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 3
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 3
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4} - 3
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4} - 3
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4} - 3
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 7 - 3
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 8 - 3
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001880
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00034: Dyck paths to binary tree: up step, left tree, down step, right treeBinary trees
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 56%
Values
[1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {4,4,4,4,4,4} - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[.,[[.,.],[[.,.],.]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[.,[[.,[.,.]],[.,.]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[.,[[[.,.],.],[.,.]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[.,[[[.,.],[.,.]],.]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[[.,[.,.]],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [[.,[.,[[.,.],[.,[.,.]]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [[.,[.,[[[.,.],.],[.,.]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [[.,[.,[[[.,.],[.,.]],.]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [[.,[[.,.],[.,[[.,.],.]]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[[.,.],[.,.]]]],.]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [[.,[[.,.],[[[.,.],.],.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [[.,[[.,[.,.]],[.,[.,.]]]],.]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [[.,[[.,[.,.]],[[.,.],.]]],.]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00034: Dyck paths to binary tree: up step, left tree, down step, right treeBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 56%
Values
[1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[.,[[.,.],[[.,.],.]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[.,[[.,[.,.]],[.,.]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[.,[[[.,.],.],[.,.]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[.,[[[.,.],[.,.]],.]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[[.,[.,.]],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [[.,[.,[[.,.],[.,[.,.]]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [[.,[.,[[[.,.],.],[.,.]]]],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [[.,[.,[[[.,.],[.,.]],.]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [[.,[[.,.],[.,[[.,.],.]]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[[.,.],[.,.]]]],.]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [[.,[[.,.],[[[.,.],.],.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [[.,[[.,[.,.]],[.,[.,.]]]],.]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [[.,[[.,[.,.]],[[.,.],.]]],.]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Mp00201: Dyck paths RingelPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St001645: Graphs ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 3 - 1
[1,0,1,0]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,5,5} - 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,5,5} - 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,5,5} - 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,4,4,4,4,4,6,6,6,6} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,2,6,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,6,1,4,5,2] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,6,1,4,5,2] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,6,1,5,4,2] => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,6,1,4,5,2] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [5,3,2,6,1,4] => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,6,5,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,6,5,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,6,3,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,2,6,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,7,7,7,7,7} - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,2,3,4,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,2,3,4,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [6,2,3,4,7,1,5] => ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [7,2,3,4,6,5,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,2,3,4,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [5,2,3,7,1,6,4] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7)
=> ? ∊ {-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [6,7,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [7,6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [7,6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [7,6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [7,5,3,6,2,4,1] => ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [7,5,3,6,2,4,1] => ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [7,6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => [7,6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [7,6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => [7,6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [7,6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [4,7,6,1,5,3,2] => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,7,6,1,5,3,2] => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,7,4,1,6,3,5] => [4,7,6,1,5,3,2] => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,7,6,1,5,3,2] => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [7,5,6,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [7,5,6,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => [7,6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,7,4,5,1,3,6] => [5,7,6,4,1,3,2] => ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [5,7,6,4,1,3,2] => ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,7,6,4,1,3,2] => ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [7,3,4,5,1,2,6] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
Description
The pebbling number of a connected graph.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000260The radius of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000717The number of ordinal summands of a poset. St000264The girth of a graph, which is not a tree. St001875The number of simple modules with projective dimension at most 1. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000996The number of exclusive left-to-right maxima of a permutation.