searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001004
St001004: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 2
[2,1] => 2
[1,2,3] => 3
[1,3,2] => 3
[2,1,3] => 3
[2,3,1] => 3
[3,1,2] => 3
[3,2,1] => 2
[1,2,3,4] => 4
[1,2,4,3] => 4
[1,3,2,4] => 4
[1,3,4,2] => 4
[1,4,2,3] => 4
[1,4,3,2] => 3
[2,1,3,4] => 4
[2,1,4,3] => 4
[2,3,1,4] => 4
[2,3,4,1] => 4
[2,4,1,3] => 4
[2,4,3,1] => 3
[3,1,2,4] => 4
[3,1,4,2] => 4
[3,2,1,4] => 3
[3,2,4,1] => 3
[3,4,1,2] => 4
[3,4,2,1] => 3
[4,1,2,3] => 4
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 2
[4,3,1,2] => 3
[4,3,2,1] => 2
[1,2,3,4,5] => 5
[1,2,3,5,4] => 5
[1,2,4,3,5] => 5
[1,2,4,5,3] => 5
[1,2,5,3,4] => 5
[1,2,5,4,3] => 4
[1,3,2,4,5] => 5
[1,3,2,5,4] => 5
[1,3,4,2,5] => 5
[1,3,4,5,2] => 5
[1,3,5,2,4] => 5
[1,3,5,4,2] => 4
[1,4,2,3,5] => 5
[1,4,2,5,3] => 5
[1,4,3,2,5] => 4
[1,4,3,5,2] => 4
[1,4,5,2,3] => 5
Description
The number of indices that are either left-to-right maxima or right-to-left minima.
The (bivariate) generating function for this statistic is (essentially) given in [1], the mid points of a $321$ pattern in the permutation are those elements which are neither left-to-right maxima nor a right-to-left minima, see [[St000371]] and [[St000372]].
Matching statistic: St000144
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000144: Dyck paths ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 83%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000144: Dyck paths ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 83%
Values
[1] => [1,0]
=> []
=> []
=> ? = 1
[1,2] => [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 2
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 2
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 3
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 3
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 2
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {3,3}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {3,3}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 4
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 4
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 4
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 4
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 4
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 3
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 4
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 3
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 4
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 2
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {3,4,4,4,4,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {3,4,4,4,4,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {3,4,4,4,4,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {3,4,4,4,4,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {3,4,4,4,4,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {3,4,4,4,4,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 5
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 5
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 5
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 5
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5}
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
Description
The pyramid weight of the Dyck path.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see [[St000331]] and [[St000335]] for related statistics.
Matching statistic: St000777
(load all 44 compositions to match this statistic)
(load all 44 compositions to match this statistic)
Mp00277: Permutations —catalanization⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> 1
[1,2] => [1,2] => ([],2)
=> ? = 2
[2,1] => [2,1] => ([(0,1)],2)
=> 2
[1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {3,3,3}
[1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {3,3,3}
[2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {3,3,3}
[2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 3
[3,1,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 3
[3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[2,3,4,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,1,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[3,1,4,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4,4,4,4,4,4,4,4,4,4}
[3,2,4,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,2,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[4,1,3,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,2,1,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,2,3,1] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,1,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,4,2] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,2,3] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,5,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,3,4] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,5,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,5,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,1,4] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5
[2,3,5,4,1] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,4,1,3,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5
[2,4,3,1,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,3,5,1] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,4,5,1,3] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5
[2,4,5,3,1] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5
[2,5,1,4,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,5,3,1,4] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,5,3,4,1] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,5,4,1,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,5,4,3,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,1,4,5,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5
[3,1,5,4,2] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,2,4,5,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,2,5,1,4] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[3,2,5,4,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
[3,4,1,5,2] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,4,2,5,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[3,4,5,1,2] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,4,5,2,1] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,5,1,2,4] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5
[3,5,1,4,2] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,5,2,1,4] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,5,2,4,1] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,5,4,1,2] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,5,4,2,1] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,1,2,5,3] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,3,5,2] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,1,5,2,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001880
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 83%
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 83%
Values
[1] => [1] => ([],1)
=> ? = 1
[1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {2,2}
[2,1] => [1,2] => ([(0,1)],2)
=> ? ∊ {2,2}
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {2,3}
[2,1,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {2,3}
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[3,1,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[1,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[1,4,3,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[2,1,3,4] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[2,1,4,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[2,3,1,4] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[2,4,1,3] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[2,4,3,1] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[3,1,2,4] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[3,1,4,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[3,2,1,4] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[3,2,4,1] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4}
[3,4,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[3,4,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,2,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,3,2] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[4,2,1,3] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[4,2,3,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,4,5,3] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,3,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,2,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,5,2,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,5,3,4,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,5,4,2,3] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[1,5,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,1,3,4,5] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,1,3,5,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,1,4,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[2,1,4,5,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,1,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,1,5,4,3] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,3,1,4,5] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,3,1,5,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,3,4,1,5] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,5,1,4] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[2,3,5,4,1] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,4,1,3,5] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,4,3,1,5] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,4,3,5,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[2,4,5,1,3] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[2,4,5,3,1] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,5,1,3,4] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[2,5,1,4,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[2,5,3,1,4] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5}
[3,4,5,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[3,4,5,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[3,5,1,2,4] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[3,5,1,4,2] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[3,5,2,1,4] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[3,5,2,4,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[4,5,1,2,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[4,5,1,3,2] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[4,5,2,1,3] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[4,5,2,3,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[4,5,3,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[4,5,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,2,3,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,2,4,3] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[5,1,3,2,4] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[5,1,3,4,2] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[5,1,4,2,3] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[5,1,4,3,2] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[5,2,1,3,4] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[5,2,1,4,3] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[5,2,3,1,4] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[5,2,3,4,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000259
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 67%
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [1,2] => ([],2)
=> ? ∊ {2,2} - 1
[2,1] => [1,2] => [1,2] => ([],2)
=> ? ∊ {2,2} - 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3,3,3} - 1
[1,3,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,1,3] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,3,1] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3,3,3} - 1
[3,1,2] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3,3,3} - 1
[3,2,1] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3,3,3} - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,2,4,3] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,3,2,4] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,3,4,2] => [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,4,2,3] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,4,3,2] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[2,1,3,4] => [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[2,3,1,4] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[2,4,1,3] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[2,4,3,1] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,1,2,4] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,1,4,2] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[3,2,1,4] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[3,2,4,1] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[3,4,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[4,1,2,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[4,1,3,2] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[4,2,1,3] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[4,2,3,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[4,3,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,2,4,3,5] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,4,5,3] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,2,5,3,4] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,5,4,3] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,2,4,5] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,2,5,4] => [1,3,2,5,4] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,3,4,2,5] => [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,4,5,2] => [1,3,4,5,2] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,3,5,2,4] => [1,3,5,2,4] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,5,4,2] => [1,3,5,2,4] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,2,3,5] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,2,5,3] => [1,4,2,5,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,4,3,2,5] => [1,4,2,5,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,4,3,5,2] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,5,2,3] => [1,4,5,2,3] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,5,3,2] => [1,4,5,2,3] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,2,3,4] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,2,4,3] => [1,5,2,4,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,3,2,4] => [1,5,2,4,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,3,4,2] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,4,2,3] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,4,3,2] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,3,4,5] => [1,3,4,5,2] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[2,1,3,5,4] => [1,3,5,2,4] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,4,3,5] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,4,5,3] => [1,4,5,2,3] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,5,3,4] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,5,4,3] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,1,4,5] => [1,4,5,2,3] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,1,5,4] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,4,1,5] => [1,5,2,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,5,1,4] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,5,4,1] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,1,5,3] => [1,5,2,4,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,3,1,5] => [1,5,2,4,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,5,3,1] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[2,5,1,4,3] => [1,4,2,5,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[2,5,3,1,4] => [1,4,2,5,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[2,5,4,1,3] => [1,3,2,5,4] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,2,4,5] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[3,1,4,2,5] => [1,4,2,5,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[3,1,5,2,4] => [1,5,2,4,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [1,5,2,4,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,5,1] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[3,2,5,1,4] => [1,4,2,5,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[3,5,4,1,2] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,5,4,2,1] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,2,3,5] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,3,2,5] => [1,3,2,5,4] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,3,5,1] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,5,1,3] => [1,3,2,5,4] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,5,1,2] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,5,2,1] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,2,3,5,6,4] => [1,2,3,5,6,4] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,2,4,5,6,3] => [1,2,4,5,6,3] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,2,5,3,6,4] => [1,2,5,3,6,4] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 3 - 1
[1,2,5,4,3,6] => [1,2,5,3,6,4] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 3 - 1
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [3,4,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,2,6,4,3,5] => [1,2,6,3,5,4] => [3,4,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [3,4,2,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,3,2,5,6,4] => [1,3,2,5,6,4] => [3,4,2,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,3,4,2,6,5] => [1,3,4,2,6,5] => [3,5,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000264
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 33%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 33%
Values
[1] => [] => ([],0)
=> ?
=> ? = 1
[1,2] => [1] => ([],1)
=> ([],1)
=> ? ∊ {2,2}
[2,1] => [1] => ([],1)
=> ([],1)
=> ? ∊ {2,2}
[1,2,3] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,3,3,3,3,3}
[1,3,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,3,3,3,3,3}
[2,1,3] => [2,1] => ([],2)
=> ([],2)
=> ? ∊ {2,3,3,3,3,3}
[2,3,1] => [2,1] => ([],2)
=> ([],2)
=> ? ∊ {2,3,3,3,3,3}
[3,1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,3,3,3,3,3}
[3,2,1] => [2,1] => ([],2)
=> ([],2)
=> ? ∊ {2,3,3,3,3,3}
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,4] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,1] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,2,1] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,2,1] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,3,4,2,5] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,3,5,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,4,3,5] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,4,5,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,5,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,5,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[5,1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[5,2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,2,4,3,5,6] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,4,3,6,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,4,6,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,6,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,4,5,6] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,4,6,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,5,4,6] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,2,5,6,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,2,6,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,6,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,4,2,5,6] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,4,2,6,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,4,6,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,6,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,6,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,6,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,2,3,5,6] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,2,3,6,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,2,6,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,3,2,5,6] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,3,2,6,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,3,5,2,6] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,3,5,6,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,3,6,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,3,6,5,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,6,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,6,2,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,6,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,6,3,5,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,3,2,4,6] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,3,2,6,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,3,6,2,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,6,3,2,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001232
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 100%
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1]
=> [1,0,1,0]
=> 1
[1,2] => [1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,1] => [1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,3] => [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,3,2] => [1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {2,3}
[2,1,3] => [1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {2,3}
[2,3,1] => [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,2] => [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,2,1] => [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[1,3,4,2] => [1,3,4,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[1,4,2,3] => [1,4,2,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[1,4,3,2] => [1,4,2,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[2,1,3,4] => [1,3,4,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[2,1,4,3] => [1,4,2,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[2,3,1,4] => [1,4,2,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[2,3,4,1] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[2,4,1,3] => [1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[2,4,3,1] => [1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[3,1,2,4] => [1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[3,1,4,2] => [1,4,2,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[3,2,1,4] => [1,4,2,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[3,2,4,1] => [1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[3,4,1,2] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[3,4,2,1] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[4,1,2,3] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[4,1,3,2] => [1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[4,2,1,3] => [1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
[4,2,3,1] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[4,3,1,2] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[4,3,2,1] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[1,2,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,2,4,5,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,2,5,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,2,5,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,3,4,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,3,4,5,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,3,5,2,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,3,5,2,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,4,2,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,4,2,5,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,4,2,5,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,4,2,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,4,5,2,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,4,5,2,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,2,4] => [1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,4,2] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,2,3] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,3,2] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,4,5] => [1,3,4,5,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,5,4] => [1,3,5,2,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,3,5] => [1,4,2,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,5,3] => [1,4,5,2,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,3,4] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,4,3] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,4,5] => [1,4,5,2,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,5,4] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,1,5] => [1,5,2,3,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,5,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[2,3,5,1,4] => [1,4,2,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,5,4,1] => [1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => [1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,1,5] => [1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,1,5,2,4] => [1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1,5] => [1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,5,1,2] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[3,4,5,2,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[4,5,1,2,3] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[4,5,2,3,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[4,5,3,1,2] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[4,5,3,2,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,1,2,3,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,2,3,4,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,3,4,1,2] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,3,4,2,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,4,1,2,3] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,4,2,3,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,4,3,1,2] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[5,4,3,2,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,2,6,4,3,5] => [1,2,6,3,5,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,3,6,2,5,4] => [1,3,6,2,5,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,3,6,4,2,5] => [1,3,6,2,5,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,4,6,2,5,3] => [1,4,6,2,5,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,4,6,3,2,5] => [1,4,6,2,5,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,5,2,4,3,6] => [1,5,2,4,3,6] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,5,2,4,6,3] => [1,5,2,4,6,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,5,3,2,4,6] => [1,5,2,4,6,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,5,3,6,2,4] => [1,5,2,4,3,6] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,5,6,2,4,3] => [1,5,6,2,4,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,5,6,3,2,4] => [1,5,6,2,4,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001879
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 83%
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 83%
Values
[1] => [1,0]
=> [[]]
=> ([(0,1)],2)
=> ? = 1
[1,2] => [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ? = 2
[2,1] => [1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3}
[1,3,2] => [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,3,3,3}
[2,1,3] => [1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,3,3,3}
[2,3,1] => [1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {2,3,3,3}
[3,1,2] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St000454
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [2] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[2,1] => [2] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,3,2] => [1,2] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[2,1,3] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,3,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[3,1,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[3,2,1] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 3 - 1
[1,2,3,4] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,2,4,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[1,3,2,4] => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,3,4,2] => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,4,2,3] => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,4,3,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[2,1,3,4] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[2,3,1,4] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,4,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,4,1,3] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,4,3,1] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[3,1,2,4] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[3,1,4,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[3,2,1,4] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[3,2,4,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[3,4,1,2] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[3,4,2,1] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[4,1,2,3] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[4,1,3,2] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[4,2,1,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[4,2,3,1] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[4,3,1,2] => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4,3,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4} - 1
[1,2,3,4,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,2,3,5,4] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,4,3,5] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,4,5,3] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,5,3,4] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,2,5,4,3] => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,2,4,5] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,3,2,5,4] => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,4,2,5] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,3,4,5,2] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,3,5,2,4] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,3,5,4,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,2,3,5] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,4,2,5,3] => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,3,2,5] => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,3,5,2] => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,5,2,3] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,4,5,3,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,2,3,4] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,5,2,4,3] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,3,2,4] => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,3,4,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,4,2,3] => [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,4,3,2] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,3,4,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,1,3,5,4] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,4,3,5] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,4,5,3] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,5,3,4] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,1,5,4,3] => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,1,4,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,3,1,5,4] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,4,1,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,3,4,5,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,3,5,1,4] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,3,5,4,1] => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,1,3,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,4,1,5,3] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,3,1,5] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,3,5,1] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,5,1,3] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,4,5,3,1] => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,3,4] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[2,5,1,4,3] => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,3,1,4] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,3,4,1] => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,4,1,3] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,4,3,1] => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,1,2,4,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[3,1,2,5,4] => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,1,4,2,5] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,1,4,5,2] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,1,5,2,4] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,1,5,4,2] => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,2,1,4,5] => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[3,4,1,2,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[3,4,5,1,2] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[3,5,1,2,4] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[4,1,2,3,5] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[4,3,1,2,5] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[4,3,5,1,2] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[4,5,1,2,3] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[4,5,3,2,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[5,1,2,3,4] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[5,3,1,2,4] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[5,3,4,1,2] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[5,4,1,2,3] => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001875
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 1
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,2}
[2,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {2,2}
[1,2,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {2,3,3,3,3,3}
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {2,3,3,3,3,3}
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,3,3,3,3,3}
[2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,3,3,3,3,3}
[3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,3,3,3,3,3}
[3,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {2,3,3,3,3,3}
[1,2,3,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,4,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,3,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,2,4] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,1,2] => [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,2,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,4,2,5,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,4,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,5,1] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,3,1] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,5,2,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,5,3,1,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[5,2,3,1,4] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,2,4,1,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,4,2] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,4,1,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,2,4,5,1,6] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,4,6,1,5] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,5,4,1,6] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,5,6,1,4] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,6,4,1,5] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,6,5,1,4] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1,5,6] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1,6,5] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,5,1,6] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,4,2,6,1,5] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,5,2,1,4,6] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,1,6,4] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,4,1,6] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,5,2,6,1,4] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,6,2,1,4,5] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,6,2,1,5,4] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,6,2,4,1,5] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,6,2,5,1,4] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,3,5,1,6] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,6,1,5] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,3,1,6] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,6,1,3] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,6,3,1,5] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,6,5,1,3] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2,5,6] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2,6,5] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,5,2,6] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,5,6,2] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,6,2,5] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,6,5,2] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,1,2,6] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,1,6,2] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,6,1,2] => [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,3,6,1,2,5] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of simple modules with projective dimension at most 1.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001060The distinguishing index of a graph. St000834The number of right outer peaks of a permutation. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000522The number of 1-protected nodes of a rooted tree. St000521The number of distinct subtrees of an ordered tree.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!