searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001680
St001680: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1
['A',2]
=> 5
['B',2]
=> 10
['G',2]
=> 26
['A',3]
=> 14
['B',3]
=> 35
['C',3]
=> 35
Description
The sum of the squares of the exponents of the Weyl group of the finite Cartan type.
According to Suter [1], this equals $\frac{1}{6}n(h^2 + \gamma - h)$, where $n$ is the rank, $h$ is the Coxeter number and $\gamma$ the gamma number.
Matching statistic: St001127
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001127: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001127: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 5
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 10
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 26
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 14
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 35
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 35
Description
The sum of the squares of the parts of a partition.
Matching statistic: St001706
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 4 = 1 + 3
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 8 = 5 + 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 13 = 10 + 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 26 + 3
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {14,35,35} + 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {14,35,35} + 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {14,35,35} + 3
Description
The number of closed sets in a graph.
A subset $S$ of the set of vertices is a closed set, if for any pair of distinct elements of $S$ the intersection of the corresponding neighbourhoods is a subset of $S$:
$$
\forall a, b\in S: N(a)\cap N(b) \subseteq S.
$$
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!