searching the database
Your data matches 288 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001172
(load all 21 compositions to match this statistic)
(load all 21 compositions to match this statistic)
St001172: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
Description
The number of 1-rises at odd height of a Dyck path.
Matching statistic: St000938
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000938: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 69%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000938: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 69%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,1}
[1,1,1,0,0,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,1}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [3,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [3,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The number of zeros of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Matching statistic: St000940
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 69%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 69%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,1}
[1,1,1,0,0,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,1}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [3,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [3,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The number of characters of the symmetric group whose value on the partition is zero.
The maximal value for any given size is recorded in [2].
Matching statistic: St001124
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001124: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 69%●distinct values known / distinct values provided: 33%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001124: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 69%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,1}
[1,1,1,0,0,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,1}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [4,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [3,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [3,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{(n-1)1}$, for $\lambda\vdash n > 1$. For $n\leq1$ the statistic is undefined.
It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than [[St000159]], the number of distinct parts of the partition.
Matching statistic: St000772
(load all 50 compositions to match this statistic)
(load all 50 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,2] => ([],2)
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0} + 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0} + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,2} + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000771
(load all 44 compositions to match this statistic)
(load all 44 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0} + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,0} + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0} + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1} + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [6,1,5,2,4,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [5,2,6,1,4,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [3,4,6,1,5,2] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [3,5,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [3,5,1,4,2,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [4,2,3,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [5,1,4,2,3,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [4,2,5,1,3,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => [4,3,2,5,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => [5,1,4,3,2,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => [3,2,4,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => [3,2,5,1,4,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => [5,1,3,2,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [3,5,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => [5,2,3,4,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => [4,1,5,3,2,6] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => [3,2,5,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [4,1,3,2,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => [2,3,5,4,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2} + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000319
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 68%●distinct values known / distinct values provided: 50%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 68%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? ∊ {0,1}
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 68%●distinct values known / distinct values provided: 50%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 68%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? ∊ {0,1}
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000506
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 68%●distinct values known / distinct values provided: 50%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 68%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? ∊ {0,0}
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,0,0,2}
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,0,0,2}
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,0,0,2}
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,0,0,2}
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {0,0,0,0,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
* [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
* [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St001035
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001035: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 68%●distinct values known / distinct values provided: 67%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001035: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 68%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {0,0}
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {0,0}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,0,2}
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,0,2}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,0,2}
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,0,2}
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,0,2}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The convexity degree of the parallelogram polyomino associated with the Dyck path.
A parallelogram polyomino is $k$-convex if $k$ is the maximal number of turns an axis-parallel path must take to connect two cells of the polyomino.
For example, any rotation of a Ferrers shape has convexity degree at most one.
The (bivariate) generating function is given in Theorem 2 of [1].
The following 278 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001280The number of parts of an integer partition that are at least two. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000661The number of rises of length 3 of a Dyck path. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St000010The length of the partition. St000053The number of valleys of the Dyck path. St000147The largest part of an integer partition. St000148The number of odd parts of a partition. St000160The multiplicity of the smallest part of a partition. St000306The bounce count of a Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000331The number of upper interactions of a Dyck path. St000475The number of parts equal to 1 in a partition. St000549The number of odd partial sums of an integer partition. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000877The depth of the binary word interpreted as a path. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000992The alternating sum of the parts of an integer partition. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001139The number of occurrences of hills of size 2 in a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001413Half the length of the longest even length palindromic prefix of a binary word. St001484The number of singletons of an integer partition. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000137The Grundy value of an integer partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001525The number of symmetric hooks on the diagonal of a partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000929The constant term of the character polynomial of an integer partition. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001651The Frankl number of a lattice. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000648The number of 2-excedences of a permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000454The largest eigenvalue of a graph if it is integral. St000617The number of global maxima of a Dyck path. St000376The bounce deficit of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001175The size of a partition minus the hook length of the base cell. St001571The Cartan determinant of the integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000731The number of double exceedences of a permutation. St000534The number of 2-rises of a permutation. St000365The number of double ascents of a permutation. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001877Number of indecomposable injective modules with projective dimension 2. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St000944The 3-degree of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001176The size of a partition minus its first part. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000478Another weight of a partition according to Alladi. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St000355The number of occurrences of the pattern 21-3. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St000732The number of double deficiencies of a permutation. St000650The number of 3-rises of a permutation. St000711The number of big exceedences of a permutation. St000872The number of very big descents of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001114The number of odd descents of a permutation. St001130The number of two successive successions in a permutation. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St000317The cycle descent number of a permutation. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001810The number of fixed points of a permutation smaller than its largest moved point. St001875The number of simple modules with projective dimension at most 1. St000649The number of 3-excedences of a permutation. St001964The interval resolution global dimension of a poset. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St000366The number of double descents of a permutation. St000441The number of successions of a permutation. St000781The number of proper colouring schemes of a Ferrers diagram. St000260The radius of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St001330The hat guessing number of a graph. St000562The number of internal points of a set partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001568The smallest positive integer that does not appear twice in the partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001520The number of strict 3-descents. St001960The number of descents of a permutation minus one if its first entry is not one. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St000665The number of rafts of a permutation. St000681The Grundy value of Chomp on Ferrers diagrams. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000993The multiplicity of the largest part of an integer partition. St001549The number of restricted non-inversions between exceedances. St000028The number of stack-sorts needed to sort a permutation. St000451The length of the longest pattern of the form k 1 2. St000750The number of occurrences of the pattern 4213 in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001720The minimal length of a chain of small intervals in a lattice. St000022The number of fixed points of a permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St000570The Edelman-Greene number of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000335The difference of lower and upper interactions. St001556The number of inversions of the third entry of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St000527The width of the poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001399The distinguishing number of a poset. St001472The permanent of the Coxeter matrix of the poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000807The sum of the heights of the valleys of the associated bargraph. St000382The first part of an integer composition. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000884The number of isolated descents of a permutation. St001846The number of elements which do not have a complement in the lattice. St000516The number of stretching pairs of a permutation. St000352The Elizalde-Pak rank of a permutation. St000741The Colin de Verdière graph invariant. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000058The order of a permutation. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001820The size of the image of the pop stack sorting operator. St000007The number of saliances of the permutation. St001552The number of inversions between excedances and fixed points of a permutation. St001868The number of alignments of type NE of a signed permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000031The number of cycles in the cycle decomposition of a permutation. St001665The number of pure excedances of a permutation. St000640The rank of the largest boolean interval in a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000383The last part of an integer composition. St000237The number of small exceedances. St000326The position of the first one in a binary word after appending a 1 at the end. St001513The number of nested exceedences of a permutation. St000920The logarithmic height of a Dyck path. St000091The descent variation of a composition. St000367The number of simsun double descents of a permutation. St000461The rix statistic of a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001394The genus of a permutation. St001715The number of non-records in a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001948The number of augmented double ascents of a permutation. St000241The number of cyclical small excedances. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000669The number of permutations obtained by switching ascents or descents of size 2. St000740The last entry of a permutation. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001256Number of simple reflexive modules that are 2-stable reflexive. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001884The number of borders of a binary word. St000542The number of left-to-right-minima of a permutation. St000764The number of strong records in an integer composition. St001435The number of missing boxes in the first row. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St000883The number of longest increasing subsequences of a permutation. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!