Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000400
St000400: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 3
[[],[],[]]
=> 3
[[],[[]]]
=> 4
[[[]],[]]
=> 4
[[[],[]]]
=> 5
[[[[]]]]
=> 6
[[],[],[],[]]
=> 4
[[],[],[[]]]
=> 5
[[],[[]],[]]
=> 5
[[],[[],[]]]
=> 6
[[],[[[]]]]
=> 7
[[[]],[],[]]
=> 5
[[[]],[[]]]
=> 6
[[[],[]],[]]
=> 6
[[[[]]],[]]
=> 7
[[[],[],[]]]
=> 7
[[[],[[]]]]
=> 8
[[[[]],[]]]
=> 8
[[[[],[]]]]
=> 9
[[[[[]]]]]
=> 10
[[],[],[],[],[]]
=> 5
[[],[],[],[[]]]
=> 6
[[],[],[[]],[]]
=> 6
[[],[],[[],[]]]
=> 7
[[],[],[[[]]]]
=> 8
[[],[[]],[],[]]
=> 6
[[],[[]],[[]]]
=> 7
[[],[[],[]],[]]
=> 7
[[],[[[]]],[]]
=> 8
[[],[[],[],[]]]
=> 8
[[],[[],[[]]]]
=> 9
[[],[[[]],[]]]
=> 9
[[],[[[],[]]]]
=> 10
[[],[[[[]]]]]
=> 11
[[[]],[],[],[]]
=> 6
[[[]],[],[[]]]
=> 7
[[[]],[[]],[]]
=> 7
[[[]],[[],[]]]
=> 8
[[[]],[[[]]]]
=> 9
[[[],[]],[],[]]
=> 7
[[[[]]],[],[]]
=> 8
[[[],[]],[[]]]
=> 8
[[[[]]],[[]]]
=> 9
[[[],[],[]],[]]
=> 8
[[[],[[]]],[]]
=> 9
[[[[]],[]],[]]
=> 9
[[[[],[]]],[]]
=> 10
[[[[[]]]],[]]
=> 11
Description
The path length of an ordered tree. This is the sum of the lengths of all paths from the root to a node, see Section 2.3.4.5 of [1].
Mp00051: Ordered trees to Dyck pathDyck paths
St001228: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 11
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St000012
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 11
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St000041
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)]
=> 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [(1,12),(2,9),(3,8),(4,7),(5,6),(10,11)]
=> 11
Description
The number of nestings of a perfect matching. This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
Matching statistic: St000231
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000231: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> {{1}}
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 3
[[[]]]
=> [1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 6
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 5
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 4
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 10
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 7
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 8
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 7
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 5
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 9
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 8
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 6
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 5
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 6
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 5
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 15
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 11
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 12
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 11
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 13
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 9
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 12
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 10
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 9
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 8
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 8
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 6
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 14
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 10
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 11
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 10
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 7
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 13
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 12
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 9
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 8
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 11
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 10
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 11
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 9
Description
Sum of the maximal elements of the blocks of a set partition.
Matching statistic: St000639
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St000639: Posets ⟶ ℤResult quality: 95% values known / values provided: 99%distinct values known / distinct values provided: 95%
Values
[[]]
=> [.,.]
=> [1] => ([],1)
=> ? = 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 2
[[[]]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 3
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 3
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 4
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 5
[[[],[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(1,2)],3)
=> 4
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 6
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 4
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 5
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 6
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(2,3)],4)
=> 5
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 7
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 7
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 8
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 6
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 9
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(2,3)],4)
=> 5
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 6
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 7
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 8
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 10
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 5
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 6
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 7
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 6
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 8
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 8
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 7
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 10
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 6
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 7
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 8
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 11
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 9
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 10
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 11
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 7
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 12
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 7
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 12
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 8
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 13
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 8
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 10
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 11
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 14
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 6
Description
The number of relations in a poset. This is the number of intervals $x,y$ with $x\leq y$ in the poset, and therefore the dimension of the posets incidence algebra.
Matching statistic: St000081
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000081: Graphs ⟶ ℤResult quality: 80% values known / values provided: 80%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 6
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[]],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[],[]],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[],[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[]],[[[[]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[]],[],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[]],[[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[]],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[],[]],[[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[],[]]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[],[[]],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]],[],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]],[[]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[]],[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[],[]],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
[[[[[]],[[]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,17}
Description
The number of edges of a graph.
Matching statistic: St000246
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000246: Permutations ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [1,2] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,2,4,6] => 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,3,4,6] => 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => 11
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,2,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,2,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,2,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,2,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,2,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,3,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [5,6,4,2,3,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [6,4,5,2,3,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [5,4,6,2,3,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [4,5,6,2,3,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,4,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,3,4,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [5,6,3,2,4,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [5,6,2,3,4,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [6,4,2,3,5,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,4,5,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [4,5,3,2,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [5,3,4,2,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [4,3,5,2,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[]],[],[]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [5,4,2,3,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [4,5,2,3,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [5,3,2,4,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[[]]],[]]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[],[],[]]]]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [4,3,2,5,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[[]],[]]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[],[[[[],[]]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,1,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[],[],[]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[],[[]]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[[],[]]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,1,2,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [6,5,4,1,2,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[],[]],[],[[]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [5,6,4,2,1,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [5,6,4,1,2,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [6,4,5,2,1,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [6,4,5,1,2,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [5,4,6,2,1,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
[[[],[]],[[[]]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [4,5,6,2,1,3,7] => ? ∊ {7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,17,17}
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Matching statistic: St000161
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
St000161: Binary trees ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 71%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [.,[.,.]]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,.],[.,[.,.]]]]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,.]],.]]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [.,[[[[.,.],[.,.]],.],.]]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [.,[[[.,.],[[.,.],.]],.]]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> 11
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [.,[[[[.,.],.],.],[[.,.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],[.,[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [.,[[[.,.],.],[[[.,.],.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[[.,.],.],[[.,.],[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [.,[[[.,.],.],[[.,[.,.]],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [.,[[[.,.],.],[.,[[.,.],.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [.,[[[.,.],.],[.,[.,[.,.]]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[[.,.],[.,[.,.]]],[.,.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [.,[[.,.],[[[[.,.],.],.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[[.,.],.],[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [.,[[.,.],[[[.,.],[.,.]],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[[.,.],.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,[.,.]]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[]],[],[]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [.,[[.,.],[[[.,[.,.]],.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,[.,.]],[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [.,[[.,.],[[.,[[.,.],.]],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[[]]],[]]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [.,[[.,.],[[.,[.,[.,.]]],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[],[],[]]]]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [.,[[.,.],[.,[[[.,.],.],.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [.,[[.,.],[.,[[.,.],[.,.]]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[[]],[]]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[[],[]]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [.,[[.,.],[.,[.,[[.,.],.]]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],[[.,.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [.,[[[.,[.,.]],.],[.,[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[],[],[]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[[[.,.],.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[],[[]]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,[.,.]],[[.,.],[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[[],[]]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [.,[[.,[.,.]],[.,[[.,.],.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,[.,.]]],.],[.,.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [.,[[.,[[.,.],.]],[[.,.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[],[]],[[[]]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [.,[[.,[[.,.],.]],[.,[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[[]]],[[],[]]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[[.,.],.]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
[[[[[]]]],[],[]]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> ? ∊ {8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20,21}
Description
The sum of the sizes of the right subtrees of a binary tree. This statistic corresponds to [[St000012]] under the Tamari Dyck path-binary tree bijection, and to [[St000018]] of the $312$-avoiding permutation corresponding to the binary tree. It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000018: Permutations ⟶ ℤResult quality: 37% values known / values provided: 37%distinct values known / distinct values provided: 76%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [2,1] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,3,5,2,6,1] => 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,3,2,6,1] => 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 11
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,5,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,4,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,6,7,4,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,7,6,4,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,6,5,7,4,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,6,7,5,4,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,4,3,5,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,4,3,6,7,5,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,3,7,6,5,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,3,6,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,4,3,6,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,4,5,3,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,4,3,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,3,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,4,6,5,3,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,5,4,6,3,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,5,6,4,3,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,4,5,7,6,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,4,6,5,7,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,5,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,6,5,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[]],[],[]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,5,4,6,7,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,5,4,7,6,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [2,5,6,4,7,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[[]]],[]]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,6,5,4,7,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[],[],[]]]]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,4,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,6,4,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[[]],[]]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,5,7,4,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[[],[]]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,2,4,5,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,2,4,6,5,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,6,7,5,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [3,2,5,4,6,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,5,6,4,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
[[[]],[[],[],[]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,2,5,6,7,4,1] => ? ∊ {7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,19,19,20}
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000057The Shynar inversion number of a standard tableau. St000067The inversion number of the alternating sign matrix. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000133The "bounce" of a permutation. St000448The number of pairs of vertices of a graph with distance 2. St000795The mad of a permutation. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001646The number of edges that can be added without increasing the maximal degree of a graph.