Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000393: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 1 = 3 - 2
1 => 1 = 3 - 2
00 => 2 = 4 - 2
01 => 1 = 3 - 2
10 => 2 = 4 - 2
11 => 2 = 4 - 2
000 => 3 = 5 - 2
001 => 2 = 4 - 2
010 => 2 = 4 - 2
011 => 2 = 4 - 2
100 => 3 = 5 - 2
101 => 2 = 4 - 2
110 => 3 = 5 - 2
111 => 3 = 5 - 2
0000 => 4 = 6 - 2
0001 => 3 = 5 - 2
0010 => 3 = 5 - 2
0011 => 3 = 5 - 2
0100 => 3 = 5 - 2
0101 => 2 = 4 - 2
0110 => 3 = 5 - 2
0111 => 3 = 5 - 2
1000 => 4 = 6 - 2
1001 => 3 = 5 - 2
1010 => 3 = 5 - 2
1011 => 3 = 5 - 2
1100 => 4 = 6 - 2
1101 => 3 = 5 - 2
1110 => 4 = 6 - 2
1111 => 4 = 6 - 2
00000 => 5 = 7 - 2
00001 => 4 = 6 - 2
00010 => 4 = 6 - 2
00011 => 4 = 6 - 2
00100 => 4 = 6 - 2
00101 => 3 = 5 - 2
00110 => 4 = 6 - 2
00111 => 4 = 6 - 2
01000 => 4 = 6 - 2
01001 => 3 = 5 - 2
01010 => 3 = 5 - 2
01011 => 3 = 5 - 2
01100 => 4 = 6 - 2
01101 => 3 = 5 - 2
01110 => 4 = 6 - 2
01111 => 4 = 6 - 2
10000 => 5 = 7 - 2
10001 => 4 = 6 - 2
10010 => 4 = 6 - 2
10011 => 4 = 6 - 2
Description
The number of strictly increasing runs in a binary word.
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001237: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> 3
1 => [1,1] => [1,0,1,0]
=> 3
00 => [3] => [1,1,1,0,0,0]
=> 4
01 => [2,1] => [1,1,0,0,1,0]
=> 3
10 => [1,2] => [1,0,1,1,0,0]
=> 4
11 => [1,1,1] => [1,0,1,0,1,0]
=> 4
000 => [4] => [1,1,1,1,0,0,0,0]
=> 5
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 4
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 4
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 4
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 5
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 6
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 5
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 5
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 5
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 5
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 5
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 5
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 5
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 6
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 6
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 6
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 6
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 5
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 6
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 6
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 6
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 5
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 5
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 6
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 5
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 6
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 6
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 7
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 6
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 6
Description
The number of simple modules with injective dimension at most one or dominant dimension at least one.
Matching statistic: St001179
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001179: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 3
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 3
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 4
10 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 4
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 4
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 4
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 5
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 5
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 5
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 5
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 5
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 6
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 6
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 6
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 6
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 6
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 6
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 6
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 6
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 5
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 6
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 6
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 6
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 6
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 6
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 7
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 5
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 6
Description
Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra.
Matching statistic: St000863
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000863: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 2 = 3 - 1
1 => [1,1] => [1,0,1,0]
=> [2,1] => 2 = 3 - 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 3 = 4 - 1
01 => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 2 = 3 - 1
10 => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 3 = 4 - 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 3 = 4 - 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 5 - 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 3 = 4 - 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 3 = 4 - 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 3 = 4 - 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 4 = 5 - 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 3 = 4 - 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 4 = 5 - 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 4 = 5 - 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 5 = 6 - 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 4 = 5 - 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 4 = 5 - 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 4 = 5 - 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 4 = 5 - 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 3 = 4 - 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 4 = 5 - 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 4 = 5 - 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 5 = 6 - 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 4 = 5 - 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 4 = 5 - 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 4 = 5 - 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 5 = 6 - 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 4 = 5 - 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 5 = 6 - 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 5 = 6 - 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 6 = 7 - 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 5 = 6 - 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 5 = 6 - 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 5 = 6 - 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => 5 = 6 - 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => 4 = 5 - 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 5 = 6 - 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 5 = 6 - 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => 5 = 6 - 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => 4 = 5 - 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 4 = 5 - 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => 4 = 5 - 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 5 = 6 - 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => 4 = 5 - 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 5 = 6 - 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 5 = 6 - 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 6 = 7 - 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => 5 = 6 - 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => 5 = 6 - 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => 5 = 6 - 1
Description
The length of the first row of the shifted shape of a permutation. The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing. The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled. This statistic records the length of the first row of $P$ and $Q$.
Matching statistic: St000876
Mp00224: Binary words runsortBinary words
Mp00200: Binary words twistBinary words
Mp00316: Binary words inverse Foata bijectionBinary words
St000876: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 0 => 1 => 1 => 1 = 3 - 2
1 => 1 => 0 => 0 => 1 = 3 - 2
00 => 00 => 10 => 10 => 1 = 3 - 2
01 => 01 => 11 => 11 => 2 = 4 - 2
10 => 01 => 11 => 11 => 2 = 4 - 2
11 => 11 => 01 => 01 => 2 = 4 - 2
000 => 000 => 100 => 010 => 2 = 4 - 2
001 => 001 => 101 => 101 => 2 = 4 - 2
010 => 001 => 101 => 101 => 2 = 4 - 2
011 => 011 => 111 => 111 => 3 = 5 - 2
100 => 001 => 101 => 101 => 2 = 4 - 2
101 => 011 => 111 => 111 => 3 = 5 - 2
110 => 011 => 111 => 111 => 3 = 5 - 2
111 => 111 => 011 => 011 => 3 = 5 - 2
0000 => 0000 => 1000 => 0010 => 3 = 5 - 2
0001 => 0001 => 1001 => 0101 => 3 = 5 - 2
0010 => 0001 => 1001 => 0101 => 3 = 5 - 2
0011 => 0011 => 1011 => 1011 => 3 = 5 - 2
0100 => 0001 => 1001 => 0101 => 3 = 5 - 2
0101 => 0101 => 1101 => 1101 => 2 = 4 - 2
0110 => 0011 => 1011 => 1011 => 3 = 5 - 2
0111 => 0111 => 1111 => 1111 => 4 = 6 - 2
1000 => 0001 => 1001 => 0101 => 3 = 5 - 2
1001 => 0011 => 1011 => 1011 => 3 = 5 - 2
1010 => 0011 => 1011 => 1011 => 3 = 5 - 2
1011 => 0111 => 1111 => 1111 => 4 = 6 - 2
1100 => 0011 => 1011 => 1011 => 3 = 5 - 2
1101 => 0111 => 1111 => 1111 => 4 = 6 - 2
1110 => 0111 => 1111 => 1111 => 4 = 6 - 2
1111 => 1111 => 0111 => 0111 => 4 = 6 - 2
00000 => 00000 => 10000 => 00010 => 4 = 6 - 2
00001 => 00001 => 10001 => 00101 => 4 = 6 - 2
00010 => 00001 => 10001 => 00101 => 4 = 6 - 2
00011 => 00011 => 10011 => 01011 => 4 = 6 - 2
00100 => 00001 => 10001 => 00101 => 4 = 6 - 2
00101 => 00101 => 10101 => 01101 => 3 = 5 - 2
00110 => 00011 => 10011 => 01011 => 4 = 6 - 2
00111 => 00111 => 10111 => 10111 => 4 = 6 - 2
01000 => 00001 => 10001 => 00101 => 4 = 6 - 2
01001 => 00101 => 10101 => 01101 => 3 = 5 - 2
01010 => 00101 => 10101 => 01101 => 3 = 5 - 2
01011 => 01011 => 11011 => 11011 => 3 = 5 - 2
01100 => 00011 => 10011 => 01011 => 4 = 6 - 2
01101 => 01011 => 11011 => 11011 => 3 = 5 - 2
01110 => 00111 => 10111 => 10111 => 4 = 6 - 2
01111 => 01111 => 11111 => 11111 => 5 = 7 - 2
10000 => 00001 => 10001 => 00101 => 4 = 6 - 2
10001 => 00011 => 10011 => 01011 => 4 = 6 - 2
10010 => 00011 => 10011 => 01011 => 4 = 6 - 2
10011 => 00111 => 10111 => 10111 => 4 = 6 - 2
Description
The number of factors in the Catalan decomposition of a binary word. Every binary word can be written in a unique way as $(\mathcal D 0)^\ell \mathcal D (1 \mathcal D)^m$, where $\mathcal D$ is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2]. This statistic records the number of factors in the Catalan factorisation, that is, $\ell + m$ if the middle Dyck word is empty and $\ell + 1 + m$ otherwise.
Matching statistic: St000245
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000245: Permutations ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 1 = 3 - 2
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 1 = 3 - 2
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 2 = 4 - 2
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 4 - 2
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 3 - 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 2 = 4 - 2
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 3 = 5 - 2
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 5 - 2
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 4 - 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3 = 5 - 2
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 2 = 4 - 2
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2 = 4 - 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 2 = 4 - 2
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 3 = 5 - 2
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 4 = 6 - 2
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4 = 6 - 2
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 5 - 2
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 4 = 6 - 2
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 5 - 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3 = 5 - 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 3 = 5 - 2
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 4 = 6 - 2
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 3 = 5 - 2
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 3 = 5 - 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 2 = 4 - 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 3 = 5 - 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 3 = 5 - 2
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 3 = 5 - 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 3 = 5 - 2
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 4 = 6 - 2
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 5 = 7 - 2
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => 5 = 7 - 2
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => 4 = 6 - 2
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => 5 = 7 - 2
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => 5 = 7 - 2
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7} - 2
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => 4 = 6 - 2
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => 4 = 6 - 2
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => 4 = 6 - 2
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => 5 = 7 - 2
Description
The number of ascents of a permutation.
Matching statistic: St001330
Mp00262: Binary words poset of factorsPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001330: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 100%
Values
0 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
1 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4} - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4} - 1
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 1
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000454
Mp00262: Binary words poset of factorsPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000454: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 100%
Values
0 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
1 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4} - 2
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4} - 2
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,5,5} - 2
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7} - 2
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000075
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St000075: Standard tableaux ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 40%
Values
0 => [2] => [1,1,0,0]
=> [[1,2],[3,4]]
=> 2 = 3 - 1
1 => [1,1] => [1,0,1,0]
=> [[1,3],[2,4]]
=> 2 = 3 - 1
00 => [3] => [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 3 = 4 - 1
01 => [2,1] => [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 3 = 4 - 1
10 => [1,2] => [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 3 = 4 - 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 2 = 3 - 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? ∊ {4,4,4,4,5,5,5,5} - 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> ? ∊ {4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6} - 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,11],[6,7,8,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[1,2,3,4,9,10],[5,6,7,8,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,2,3,4,9,11],[5,6,7,8,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,2,3,7,8,9],[4,5,6,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[1,2,3,7,8,11],[4,5,6,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[1,2,3,7,9,10],[4,5,6,8,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [[1,2,3,7,9,11],[4,5,6,8,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,2,5,6,7,8],[3,4,9,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[1,2,5,6,7,11],[3,4,8,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[1,2,5,6,9,10],[3,4,7,8,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[1,2,5,6,9,11],[3,4,7,8,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[1,2,5,7,8,9],[3,4,6,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[1,2,5,7,8,11],[3,4,6,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[1,2,5,7,9,10],[3,4,6,8,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[1,2,5,7,9,11],[3,4,6,8,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,3,4,5,9,11],[2,6,7,8,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,3,4,7,8,9],[2,5,6,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,3,4,7,8,11],[2,5,6,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,3,4,7,9,10],[2,5,6,8,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,3,4,7,9,11],[2,5,6,8,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,3,5,6,7,8],[2,4,9,10,11,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,3,5,6,7,11],[2,4,8,9,10,12]]
=> ? ∊ {5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7} - 1
Description
The orbit size of a standard tableau under promotion.