searching the database
Your data matches 55 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000172
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Values
([],1)
 => 1 = 2 - 1
([],2)
 => 1 = 2 - 1
([(0,1)],2)
 => 2 = 3 - 1
([],3)
 => 1 = 2 - 1
([(1,2)],3)
 => 2 = 3 - 1
([(0,2),(1,2)],3)
 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([],4)
 => 1 = 2 - 1
([(2,3)],4)
 => 2 = 3 - 1
([(1,3),(2,3)],4)
 => 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
 => 2 = 3 - 1
([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4 = 5 - 1
([],5)
 => 1 = 2 - 1
([(3,4)],5)
 => 2 = 3 - 1
([(2,4),(3,4)],5)
 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(1,4),(2,3)],5)
 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
 => 3 = 4 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 3 = 4 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
Description
The Grundy number of a graph.
The Grundy number $\Gamma(G)$ is defined to be the largest $k$ such that $G$ admits a greedy $k$-coloring. Any order of the vertices of $G$ induces a greedy coloring by assigning to the $i$-th vertex in this order the smallest positive integer such that the partial coloring remains a proper coloring.
In particular, we have that $\chi(G) \leq \Gamma(G) \leq \Delta(G) + 1$, where $\chi(G)$ is the chromatic number of $G$ ([[St000098]]), and where $\Delta(G)$ is the maximal degree of a vertex of $G$ ([[St000171]]).
Matching statistic: St001318
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
 => ([(0,1)],2)
 => 2
([],2)
 => ([(0,2),(1,2)],3)
 => 3
([(0,1)],2)
 => ([(0,1),(0,2),(1,2)],3)
 => 2
([],3)
 => ([(0,3),(1,3),(2,3)],4)
 => 4
([(1,2)],3)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3
([(0,2),(1,2)],3)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
([],4)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 5
([(2,3)],4)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
([(1,3),(2,3)],4)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
([(0,3),(1,2)],4)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 3
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
([(1,2),(1,3),(2,3)],4)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
([],5)
 => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 6
([(3,4)],5)
 => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
([(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
([(1,4),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
([(1,4),(2,3)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => 4
([(1,4),(2,3),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => 5
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
Description
The number of vertices of the largest induced subforest with the same number of connected components of a graph.
Matching statistic: St001581
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => 1 = 2 - 1
([],2)
 => ([],1)
 => 1 = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => 2 = 3 - 1
([],3)
 => ([],1)
 => 1 = 2 - 1
([(1,2)],3)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([],4)
 => ([],1)
 => 1 = 2 - 1
([(2,3)],4)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4 = 5 - 1
([],5)
 => ([],1)
 => 1 = 2 - 1
([(3,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 3 = 4 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
Description
The achromatic number of a graph.
This is the maximal number of colours of a proper colouring, such that for any pair of colours there are two adjacent vertices with these colours.
Matching statistic: St001670
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => 1 = 2 - 1
([],2)
 => ([],1)
 => 1 = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => 2 = 3 - 1
([],3)
 => ([],1)
 => 1 = 2 - 1
([(1,2)],3)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([],4)
 => ([],1)
 => 1 = 2 - 1
([(2,3)],4)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4 = 5 - 1
([],5)
 => ([],1)
 => 1 = 2 - 1
([(3,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(2,3)],4)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 3 = 4 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
Description
The connected partition number of a graph.
This is the maximal number of blocks of a set partition $P$ of the set of vertices of a graph such that contracting each block of $P$ to a single vertex yields a clique.
Also called the pseudoachromatic number of a graph. This is the largest $n$ such that there exists a (not necessarily proper) $n$-coloring of the graph so that every two distinct colors are adjacent.
Matching statistic: St000822
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => ([],1)
 => 1 = 2 - 1
([],2)
 => ([],2)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1 = 2 - 1
([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2 = 3 - 1
([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 1 = 2 - 1
([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4 = 5 - 1
([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 1 = 2 - 1
([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5 = 6 - 1
([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 4 = 5 - 1
([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 3 = 4 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,3)],5)
 => 2 = 3 - 1
Description
The Hadwiger number of the graph.
Also known as clique contraction number, this is the size of the largest complete minor.
Matching statistic: St001580
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => ([],1)
 => 1 = 2 - 1
([],2)
 => ([],2)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1 = 2 - 1
([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2 = 3 - 1
([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ([(1,2)],3)
 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 1 = 2 - 1
([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4 = 5 - 1
([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2)],4)
 => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 1 = 2 - 1
([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5 = 6 - 1
([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 4 = 5 - 1
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 4 = 5 - 1
([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 3 = 4 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,3)],5)
 => 2 = 3 - 1
Description
The acyclic chromatic number of a graph.
This is the smallest size of a vertex partition $\{V_1,\dots,V_k\}$ such that each $V_i$ is an independent set and for all $i,j$ the subgraph inducted by $V_i\cup V_j$ does not contain a cycle.
Matching statistic: St000272
Values
([],1)
 => ([],1)
 => ([],1)
 => 0 = 2 - 2
([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 2 - 2
([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 1 = 3 - 2
([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ([(1,2)],3)
 => 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 0 = 2 - 2
([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 5 - 2
([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 1 = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2)],4)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 0 = 2 - 2
([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 6 - 2
([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 5 - 2
([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 2 = 4 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 3 - 2
Description
The treewidth of a graph.
A graph has treewidth zero if and only if it has no edges.  A connected graph has treewidth at most one if and only if it is a tree. A connected graph has treewidth at most two if and only if it is a series-parallel graph.
Matching statistic: St000536
Values
([],1)
 => ([],1)
 => ([],1)
 => 0 = 2 - 2
([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 2 - 2
([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 1 = 3 - 2
([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ([(1,2)],3)
 => 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 0 = 2 - 2
([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 5 - 2
([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 1 = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2)],4)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 0 = 2 - 2
([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 6 - 2
([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 3 = 5 - 2
([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 2 = 4 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 3 - 2
Description
The pathwidth of a graph.
Matching statistic: St001277
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 2 - 2
([],2)
 => ([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 2 - 2
([],3)
 => ([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([(1,2)],3)
 => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 1 = 3 - 2
([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ([(1,2)],3)
 => 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 0 = 2 - 2
([],4)
 => ([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 5 - 2
([(2,3)],4)
 => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 1 = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2)],4)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 0 = 2 - 2
([],5)
 => ([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 6 - 2
([(3,4)],5)
 => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 2 = 4 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => 1 = 3 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 3 - 2
Description
The degeneracy of a graph.
The degeneracy of a graph $G$ is the maximum of the minimum degrees of the (vertex induced) subgraphs of $G$.
Matching statistic: St000741
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => 0 = 2 - 2
([],2)
 => ([],1)
 => 0 = 2 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 3 - 2
([],3)
 => ([],1)
 => 0 = 2 - 2
([(1,2)],3)
 => ([(1,2)],3)
 => ? = 3 - 2
([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([],4)
 => ([],1)
 => 0 = 2 - 2
([(2,3)],4)
 => ([(1,2)],3)
 => ? ∊ {3,3,4} - 2
([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => ? ∊ {3,3,4} - 2
([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ? ∊ {3,3,4} - 2
([(0,3),(1,2),(2,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 5 - 2
([],5)
 => ([],1)
 => 0 = 2 - 2
([(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
 => ([(0,3),(1,2)],4)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(1,2),(2,3)],4)
 => 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2)],3)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(2,3)],4)
 => 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => ? ∊ {3,3,4,4,4,5,5} - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 2 = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 5 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 5 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 6 - 2
Description
The Colin de Verdière graph invariant.
The following 45 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001812The biclique partition number of a graph. St000806The semiperimeter of the associated bargraph. St000259The diameter of a connected graph. St000144The pyramid weight of the Dyck path. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St000454The largest eigenvalue of a graph if it is integral. St001644The dimension of a graph. St001180Number of indecomposable injective modules with projective dimension at most 1. St001330The hat guessing number of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001621The number of atoms of a lattice. St001645The pebbling number of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra  St001643The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path. St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St000260The radius of a connected graph. St001875The number of simple modules with projective dimension at most 1. St001877Number of indecomposable injective modules with projective dimension 2. St000299The number of nonisomorphic vertex-induced subtrees. St000776The maximal multiplicity of an eigenvalue in a graph. St001624The breadth of a lattice. St001060The distinguishing index of a graph. St000264The girth of a graph, which is not a tree. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000422The energy of a graph, if it is integral. St001651The Frankl number of a lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!