searching the database
Your data matches 86 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000822
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 1
Description
The Hadwiger number of the graph.
Also known as clique contraction number, this is the size of the largest complete minor.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001580
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 1
Description
The acyclic chromatic number of a graph.
This is the smallest size of a vertex partition $\{V_1,\dots,V_k\}$ such that each $V_i$ is an independent set and for all $i,j$ the subgraph inducted by $V_i\cup V_j$ does not contain a cycle.
Matching statistic: St001642
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,1],[1]]
=> ([],2)
=> ([(0,1)],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 2
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 2
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 2
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 2
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
Description
The Prague dimension of a graph.
This is the least number of complete graphs such that the graph is an induced subgraph of their (categorical) product.
Put differently, this is the least number $n$ such that the graph can be embedded into $\mathbb N^n$, where two points are connected by an edge if and only if they differ in all coordinates.
Matching statistic: St001883
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 1
Description
The mutual visibility number of a graph.
This is the largest cardinality of a subset $P$ of vertices of a graph $G$, such that for each pair of vertices in $P$ there is a shortest path in $G$ which contains no other point in $P$.
In particular, the mutual visibility number of the disjoint union of two graphs is the maximum of their mutual visibility numbers.
Matching statistic: St000272
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 0 = 1 - 1
Description
The treewidth of a graph.
A graph has treewidth zero if and only if it has no edges. A connected graph has treewidth at most one if and only if it is a tree. A connected graph has treewidth at most two if and only if it is a series-parallel graph.
Matching statistic: St000536
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 0 = 1 - 1
Description
The pathwidth of a graph.
Matching statistic: St000537
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 0 = 1 - 1
Description
The cutwidth of a graph.
This is the minimum possible width of a linear ordering of its vertices, where the width of an ordering $\sigma$ is the maximum, among all the prefixes of $\sigma$, of the number of edges that have exactly one vertex in a prefix.
Matching statistic: St001270
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 0 = 1 - 1
Description
The bandwidth of a graph.
The bandwidth of a graph is the smallest number $k$ such that the vertices of the graph can be
ordered as $v_1,\dots,v_n$ with $k \cdot d(v_i,v_j) \geq |i-j|$.
We adopt the convention that the singleton graph has bandwidth $0$, consistent with the bandwith of the complete graph on $n$ vertices having bandwidth $n-1$, but in contrast to any path graph on more than one vertex having bandwidth $1$. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Matching statistic: St001277
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 0 = 1 - 1
Description
The degeneracy of a graph.
The degeneracy of a graph $G$ is the maximum of the minimum degrees of the (vertex induced) subgraphs of $G$.
The following 76 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001358The largest degree of a regular subgraph of a graph. St001644The dimension of a graph. St001792The arboricity of a graph. St001962The proper pathwidth of a graph. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001331The size of the minimal feedback vertex set. St000640The rank of the largest boolean interval in a poset. St001592The maximal number of simple paths between any two different vertices of a graph. St000007The number of saliances of the permutation. St000374The number of exclusive right-to-left minima of a permutation. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000058The order of a permutation. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000253The crossing number of a set partition. St000254The nesting number of a set partition. St000730The maximal arc length of a set partition. St000454The largest eigenvalue of a graph if it is integral. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000630The length of the shortest palindromic decomposition of a binary word. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001471The magnitude of a Dyck path. St000011The number of touch points (or returns) of a Dyck path. St000325The width of the tree associated to a permutation. St000326The position of the first one in a binary word after appending a 1 at the end. St000397The Strahler number of a rooted tree. St000444The length of the maximal rise of a Dyck path. St000470The number of runs in a permutation. St000542The number of left-to-right-minima of a permutation. St000733The row containing the largest entry of a standard tableau. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St000842The breadth of a permutation. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000260The radius of a connected graph. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St000485The length of the longest cycle of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St001545The second Elser number of a connected graph. St000015The number of peaks of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000953The largest degree of an irreducible factor of the Coxeter polynomial of the Dyck path over the rational numbers. St000983The length of the longest alternating subword. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001530The depth of a Dyck path. St001060The distinguishing index of a graph. St001516The number of cyclic bonds of a permutation. St000741The Colin de Verdière graph invariant. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000318The number of addable cells of the Ferrers diagram of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000075The orbit size of a standard tableau under promotion.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!