searching the database
Your data matches 495 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000272
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The treewidth of a graph.
A graph has treewidth zero if and only if it has no edges. A connected graph has treewidth at most one if and only if it is a tree. A connected graph has treewidth at most two if and only if it is a series-parallel graph.
Matching statistic: St000536
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The pathwidth of a graph.
Matching statistic: St001277
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The degeneracy of a graph.
The degeneracy of a graph $G$ is the maximum of the minimum degrees of the (vertex induced) subgraphs of $G$.
Matching statistic: St001358
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The largest degree of a regular subgraph of a graph.
For $k > 2$, it is an NP-complete problem to determine whether a graph has a $k$-regular subgraph, see [1].
Matching statistic: St000172
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Values
([],1)
=> 1 = 0 + 1
([],2)
=> 1 = 0 + 1
([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> 1 = 0 + 1
([(1,2)],3)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([],4)
=> 1 = 0 + 1
([(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
Description
The Grundy number of a graph.
The Grundy number $\Gamma(G)$ is defined to be the largest $k$ such that $G$ admits a greedy $k$-coloring. Any order of the vertices of $G$ induces a greedy coloring by assigning to the $i$-th vertex in this order the smallest positive integer such that the partial coloring remains a proper coloring.
In particular, we have that $\chi(G) \leq \Gamma(G) \leq \Delta(G) + 1$, where $\chi(G)$ is the chromatic number of $G$ ([[St000098]]), and where $\Delta(G)$ is the maximal degree of a vertex of $G$ ([[St000171]]).
Matching statistic: St000822
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> 1 = 0 + 1
([],2)
=> 1 = 0 + 1
([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> 1 = 0 + 1
([(1,2)],3)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([],4)
=> 1 = 0 + 1
([(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
Description
The Hadwiger number of the graph.
Also known as clique contraction number, this is the size of the largest complete minor.
Matching statistic: St001580
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
=> 1 = 0 + 1
([],2)
=> 1 = 0 + 1
([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> 1 = 0 + 1
([(1,2)],3)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([],4)
=> 1 = 0 + 1
([(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
Description
The acyclic chromatic number of a graph.
This is the smallest size of a vertex partition $\{V_1,\dots,V_k\}$ such that each $V_i$ is an independent set and for all $i,j$ the subgraph inducted by $V_i\cup V_j$ does not contain a cycle.
Matching statistic: St001581
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Values
([],1)
=> 1 = 0 + 1
([],2)
=> 1 = 0 + 1
([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> 1 = 0 + 1
([(1,2)],3)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([],4)
=> 1 = 0 + 1
([(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
Description
The achromatic number of a graph.
This is the maximal number of colours of a proper colouring, such that for any pair of colours there are two adjacent vertices with these colours.
Matching statistic: St000778
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The metric dimension of a graph.
This is the length of the shortest vector of vertices, such that every vertex is uniquely determined by the vector of distances from these vertices.
Matching statistic: St001331
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
Description
The size of the minimal feedback vertex set.
A feedback vertex set is a set of vertices whose removal results in an acyclic graph.
The following 485 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001512The minimum rank of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000918The 2-limited packing number of a graph. St001108The 2-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001670The connected partition number of a graph. St001963The tree-depth of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St001746The coalition number of a graph. St000452The number of distinct eigenvalues of a graph. St000482The (zero)-forcing number of a graph. St000784The maximum of the length and the largest part of the integer partition. St001119The length of a shortest maximal path in a graph. St001315The dissociation number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001391The disjunction number of a graph. St000636The hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St000028The number of stack-sorts needed to sort a permutation. St000053The number of valleys of the Dyck path. St000120The number of left tunnels of a Dyck path. St000141The maximum drop size of a permutation. St000160The multiplicity of the smallest part of a partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000331The number of upper interactions of a Dyck path. St000769The major index of a composition regarded as a word. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000015The number of peaks of a Dyck path. St000384The maximal part of the shifted composition of an integer partition. St000451The length of the longest pattern of the form k 1 2. St000453The number of distinct Laplacian eigenvalues of a graph. St000676The number of odd rises of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001530The depth of a Dyck path. St001674The number of vertices of the largest induced star graph in the graph. St001733The number of weak left to right maxima of a Dyck path. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St001180Number of indecomposable injective modules with projective dimension at most 1. St001486The number of corners of the ribbon associated with an integer composition. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001812The biclique partition number of a graph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St000741The Colin de Verdière graph invariant. St001621The number of atoms of a lattice. St001644The dimension of a graph. St001672The restrained domination number of a graph. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000259The diameter of a connected graph. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000547The number of even non-empty partial sums of an integer partition. St000765The number of weak records in an integer composition. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000904The maximal number of repetitions of an integer composition. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001424The number of distinct squares in a binary word. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001716The 1-improper chromatic number of a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000117The number of centered tunnels of a Dyck path. St000291The number of descents of a binary word. St000306The bounce count of a Dyck path. St000340The number of non-final maximal constant sub-paths of length greater than one. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000681The Grundy value of Chomp on Ferrers diagrams. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000820The number of compositions obtained by rotating the composition. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000947The major index east count of a Dyck path. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001910The height of the middle non-run of a Dyck path. St000260The radius of a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000917The open packing number of a graph. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000335The difference of lower and upper interactions. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001480The number of simple summands of the module J^2/J^3. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St000455The second largest eigenvalue of a graph if it is integral. St000387The matching number of a graph. St000478Another weight of a partition according to Alladi. St000526The number of posets with combinatorially isomorphic order polytopes. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000906The length of the shortest maximal chain in a poset. St000939The number of characters of the symmetric group whose value on the partition is positive. St001271The competition number of a graph. St001568The smallest positive integer that does not appear twice in the partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001624The breadth of a lattice. St001645The pebbling number of a connected graph. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001500The global dimension of magnitude 1 Nakayama algebras. St000735The last entry on the main diagonal of a standard tableau. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000466The Gutman (or modified Schultz) index of a connected graph. St000937The number of positive values of the symmetric group character corresponding to the partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000456The monochromatic index of a connected graph. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000640The rank of the largest boolean interval in a poset. St000667The greatest common divisor of the parts of the partition. St000699The toughness times the least common multiple of 1,. St000781The number of proper colouring schemes of a Ferrers diagram. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001281The normalized isoperimetric number of a graph. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001527The cyclic permutation representation number of an integer partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001571The Cartan determinant of the integer partition. St001592The maximal number of simple paths between any two different vertices of a graph. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001637The number of (upper) dissectors of a poset. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001890The maximum magnitude of the Möbius function of a poset. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000003The number of standard Young tableaux of the partition. St000010The length of the partition. St000014The number of parking functions supported by a Dyck path. St000026The position of the first return of a Dyck path. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000048The multinomial of the parts of a partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000063The number of linear extensions of a certain poset defined for an integer partition. St000075The orbit size of a standard tableau under promotion. St000079The number of alternating sign matrices for a given Dyck path. St000088The row sums of the character table of the symmetric group. St000108The number of partitions contained in the given partition. St000144The pyramid weight of the Dyck path. St000147The largest part of an integer partition. St000148The number of odd parts of a partition. St000159The number of distinct parts of the integer partition. St000179The product of the hook lengths of the integer partition. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000184The size of the centralizer of any permutation of given cycle type. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000228The size of a partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000288The number of ones in a binary word. St000290The major index of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000297The number of leading ones in a binary word. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000378The diagonal inversion number of an integer partition. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000392The length of the longest run of ones in a binary word. St000393The number of strictly increasing runs in a binary word. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000443The number of long tunnels of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000517The Kreweras number of an integer partition. St000519The largest length of a factor maximising the subword complexity. St000529The number of permutations whose descent word is the given binary word. St000531The leading coefficient of the rook polynomial of an integer partition. St000532The total number of rook placements on a Ferrers board. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000543The size of the conjugacy class of a binary word. St000548The number of different non-empty partial sums of an integer partition. St000549The number of odd partial sums of an integer partition. St000626The minimal period of a binary word. St000627The exponent of a binary word. St000628The balance of a binary word. St000630The length of the shortest palindromic decomposition of a binary word. St000644The number of graphs with given frequency partition. St000655The length of the minimal rise of a Dyck path. St000668The least common multiple of the parts of the partition. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000691The number of changes of a binary word. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000733The row containing the largest entry of a standard tableau. St000734The last entry in the first row of a standard tableau. St000738The first entry in the last row of a standard tableau. St000753The Grundy value for the game of Kayles on a binary word. St000759The smallest missing part in an integer partition. St000770The major index of an integer partition when read from bottom to top. St000783The side length of the largest staircase partition fitting into a partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000811The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions. St000812The sum of the entries in the column specified by the partition of the change of basis matrix from complete homogeneous symmetric functions to monomial symmetric functions. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000815The number of semistandard Young tableaux of partition weight of given shape. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000847The number of standard Young tableaux whose descent set is the binary word. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000897The number of different multiplicities of parts of an integer partition. St000913The number of ways to refine the partition into singletons. St000922The minimal number such that all substrings of this length are unique. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000932The number of occurrences of the pattern UDU in a Dyck path. St000933The number of multipartitions of sizes given by an integer partition. St000935The number of ordered refinements of an integer partition. St000952Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000982The length of the longest constant subword. St000983The length of the longest alternating subword. St000992The alternating sum of the parts of an integer partition. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001129The product of the squares of the parts of a partition. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001161The major index north count of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001256Number of simple reflexive modules that are 2-stable reflexive. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001313The number of Dyck paths above the lattice path given by a binary word. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001372The length of a longest cyclic run of ones of a binary word. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001437The flex of a binary word. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001481The minimal height of a peak of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001484The number of singletons of an integer partition. St001485The modular major index of a binary word. St001487The number of inner corners of a skew partition. St001488The number of corners of a skew partition. St001490The number of connected components of a skew partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001523The degree of symmetry of a Dyck path. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001564The value of the forgotten symmetric functions when all variables set to 1. St001593This is the number of standard Young tableaux of the given shifted shape. St001595The number of standard Young tableaux of the skew partition. St001597The Frobenius rank of a skew partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001612The number of coloured multisets of cycles such that the multiplicities of colours are given by a partition. St001614The cyclic permutation representation number of a skew partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001710The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001721The degree of a binary word. St001722The number of minimal chains with small intervals between a binary word and the top element. St001732The number of peaks visible from the left. St001763The Hurwitz number of an integer partition. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001809The index of the step at the first peak of maximal height in a Dyck path. St001814The number of partitions interlacing the given partition. St001838The number of nonempty primitive factors of a binary word. St001884The number of borders of a binary word. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001955The number of natural descents for set-valued two row standard Young tableaux. St001959The product of the heights of the peaks of a Dyck path. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St001118The acyclic chromatic index of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001378The product of the cohook lengths of the integer partition. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St000379The number of Hamiltonian cycles in a graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000284The Plancherel distribution on integer partitions. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001060The distinguishing index of a graph. St000464The Schultz index of a connected graph. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000928The sum of the coefficients of the character polynomial of an integer partition. St001545The second Elser number of a connected graph. St001651The Frankl number of a lattice. St000137The Grundy value of an integer partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001383The BG-rank of an integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001561The value of the elementary symmetric function evaluated at 1. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000422The energy of a graph, if it is integral. St000302The determinant of the distance matrix of a connected graph. St000467The hyper-Wiener index of a connected graph. St000567The sum of the products of all pairs of parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001845The number of join irreducibles minus the rank of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001613The binary logarithm of the size of the center of a lattice. St001617The dimension of the space of valuations of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000420The number of Dyck paths that are weakly above a Dyck path. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000442The maximal area to the right of an up step of a Dyck path. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000658The number of rises of length 2 of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000744The length of the path to the largest entry in a standard Young tableau. St000874The position of the last double rise in a Dyck path. St000934The 2-degree of an integer partition. St000946The sum of the skew hook positions in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St000984The number of boxes below precisely one peak. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001808The box weight or horizontal decoration of a Dyck path. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001626The number of maximal proper sublattices of a lattice. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001961The sum of the greatest common divisors of all pairs of parts.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!