searching the database
Your data matches 71 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001418
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001418: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001418: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,0,1,0]
=> 0
[2,1] => [1,1,0,0]
=> 1
[1,2,3] => [1,0,1,0,1,0]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> 2
[3,1,2] => [1,1,1,0,0,0]
=> 1
[3,2,1] => [1,1,1,0,0,0]
=> 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> 2
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Matching statistic: St000442
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [2,1] => [1,1,0,0]
=> 1
[2,1] => [2,1] => [1,2] => [1,0,1,0]
=> 0
[1,2,3] => [1,3,2] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,3,2] => [1,3,2] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[2,1,3] => [2,1,3] => [3,1,2] => [1,1,1,0,0,0]
=> 2
[2,3,1] => [2,3,1] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[3,1,2] => [3,1,2] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[3,2,1] => [3,2,1] => [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[1,2,4,3] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[1,3,2,4] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[1,3,4,2] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[1,4,2,3] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[2,1,3,4] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,3,1,4] => [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[2,3,4,1] => [2,4,3,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[2,4,3,1] => [2,4,3,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 1
[3,1,2,4] => [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[3,1,4,2] => [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 3
[3,2,4,1] => [3,2,4,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[3,4,2,1] => [3,4,2,1] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[4,1,2,3] => [4,1,3,2] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,2,3,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,2,5,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,2,5,4,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,4,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,4,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,5,2,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,4,2,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,4,2,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,4,5,3,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000730
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000730: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000730: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [2,1] => {{1,2}}
=> 1
[2,1] => [2,1] => [1,2] => {{1},{2}}
=> 0
[1,2,3] => [1,3,2] => [2,3,1] => {{1,2,3}}
=> 1
[1,3,2] => [1,3,2] => [2,3,1] => {{1,2,3}}
=> 1
[2,1,3] => [2,1,3] => [3,1,2] => {{1,3},{2}}
=> 2
[2,3,1] => [2,3,1] => [1,3,2] => {{1},{2,3}}
=> 1
[3,1,2] => [3,1,2] => [2,1,3] => {{1,2},{3}}
=> 1
[3,2,1] => [3,2,1] => [1,2,3] => {{1},{2},{3}}
=> 0
[1,2,3,4] => [1,4,3,2] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[1,2,4,3] => [1,4,3,2] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[1,3,2,4] => [1,4,3,2] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[1,3,4,2] => [1,4,3,2] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[1,4,2,3] => [1,4,3,2] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[2,1,3,4] => [2,1,4,3] => [3,4,1,2] => {{1,3},{2,4}}
=> 2
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => {{1,3},{2,4}}
=> 2
[2,3,1,4] => [2,4,1,3] => [3,1,4,2] => {{1,3,4},{2}}
=> 2
[2,3,4,1] => [2,4,3,1] => [1,3,4,2] => {{1},{2,3,4}}
=> 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => {{1,3,4},{2}}
=> 2
[2,4,3,1] => [2,4,3,1] => [1,3,4,2] => {{1},{2,3,4}}
=> 1
[3,1,2,4] => [3,1,4,2] => [2,4,1,3] => {{1,2,4},{3}}
=> 2
[3,1,4,2] => [3,1,4,2] => [2,4,1,3] => {{1,2,4},{3}}
=> 2
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => {{1,4},{2},{3}}
=> 3
[3,2,4,1] => [3,2,4,1] => [1,4,2,3] => {{1},{2,4},{3}}
=> 2
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => {{1,2},{3,4}}
=> 1
[3,4,2,1] => [3,4,2,1] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[4,1,2,3] => [4,1,3,2] => [2,3,1,4] => {{1,2,3},{4}}
=> 1
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => {{1,2,3},{4}}
=> 1
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => {{1,3},{2},{4}}
=> 2
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,3,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,2,3,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,2,4,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,2,4,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,2,5,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,2,5,4,3] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,3,2,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,3,2,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,3,4,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,3,4,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,3,5,2,4] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,4,2,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,4,2,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,4,3,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,4,3,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
[1,4,5,3,2] => [1,5,4,3,2] => [2,3,4,5,1] => {{1,2,3,4,5}}
=> 1
Description
The maximal arc length of a set partition.
The arcs of a set partition are those $i < j$ that are consecutive elements in the blocks. If there are no arcs, the maximal arc length is $0$.
Matching statistic: St000013
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [2,1] => [1,1,0,0]
=> 2 = 1 + 1
[2,1] => [2,1] => [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [1,3,2] => [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2] => [1,3,2] => [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,3] => [2,1,3] => [3,1,2] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[2,3,1] => [2,3,1] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[3,1,2] => [3,1,2] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[3,2,1] => [3,2,1] => [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,3,4] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,4,3] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2,4] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,4,2] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,2,3] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,3,4] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[2,3,1,4] => [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[2,3,4,1] => [2,4,3,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[2,4,3,1] => [2,4,3,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[3,1,2,4] => [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[3,1,4,2] => [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,2,4,1] => [3,2,4,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,4,2,1] => [3,4,2,1] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,1,2,3] => [4,1,3,2] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,3,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,3,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,4,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,4,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,5,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,5,4,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,4,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,4,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,5,2,4] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,5,4,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,2,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,2,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,3,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,3,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,5,2,3] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,4,5,3,2] => [1,5,4,3,2] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
Description
The height of a Dyck path.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000845
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1] => [2,1] => ([],2)
=> ([],2)
=> 0
[1,2,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2
[2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => ([],3)
=> ([],3)
=> 0
[1,2,3,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,2,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,3,1,4] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[2,3,4,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[2,4,3,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3)],4)
=> 2
[3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1
[3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[4,1,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3)],4)
=> 2
[4,2,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[4,3,1,2] => [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => ([],4)
=> ([],4)
=> 0
[1,2,3,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,4,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,4,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,2,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,3,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,2,1,5,6,7] => [4,3,2,1,7,6,5] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,1,5,7,6] => [4,3,2,1,7,6,5] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,1,6,5,7] => [4,3,2,1,7,6,5] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,1,6,7,5] => [4,3,2,1,7,6,5] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,1,7,5,6] => [4,3,2,1,7,6,5] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,1,7,6,5] => [4,3,2,1,7,6,5] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,5,1,6,7] => [4,3,2,7,1,6,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,5,1,7,6] => [4,3,2,7,1,6,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,5,6,1,7] => [4,3,2,7,6,1,5] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,5,6,7,1] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,5,7,1,6] => [4,3,2,7,6,1,5] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,5,7,6,1] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,6,1,5,7] => [4,3,2,7,1,6,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,6,1,7,5] => [4,3,2,7,1,6,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,6,5,1,7] => [4,3,2,7,6,1,5] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,6,5,7,1] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,6,7,1,5] => [4,3,2,7,6,1,5] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,6,7,5,1] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,7,1,5,6] => [4,3,2,7,1,6,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,7,1,6,5] => [4,3,2,7,1,6,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,7,5,1,6] => [4,3,2,7,6,1,5] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,7,5,6,1] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,7,6,1,5] => [4,3,2,7,6,1,5] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,2,7,6,5,1] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,5,2,1,6,7] => [4,3,7,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,5,2,1,7,6] => [4,3,7,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,5,2,6,1,7] => [4,3,7,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,5,2,6,7,1] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,5,2,7,1,6] => [4,3,7,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,5,2,7,6,1] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,6,2,1,5,7] => [4,3,7,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,6,2,1,7,5] => [4,3,7,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,6,2,5,1,7] => [4,3,7,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,6,2,5,7,1] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,6,2,7,1,5] => [4,3,7,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,6,2,7,5,1] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,7,2,1,5,6] => [4,3,7,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,7,2,1,6,5] => [4,3,7,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,7,2,5,1,6] => [4,3,7,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,7,2,5,6,1] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,7,2,6,1,5] => [4,3,7,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,3,7,2,6,5,1] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,2,1,6,7] => [4,7,3,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,2,1,7,6] => [4,7,3,2,1,6,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,2,6,1,7] => [4,7,3,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,2,7,1,6] => [4,7,3,2,6,1,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,6,2,1,7] => [4,7,3,6,2,1,5] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,6,2,7,1] => [4,7,3,6,2,5,1] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,7,2,1,6] => [4,7,3,6,2,1,5] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[4,5,3,7,2,6,1] => [4,7,3,6,2,5,1] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St001432
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00312: Integer partitions —Glaisher-Franklin⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 74%●distinct values known / distinct values provided: 57%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00312: Integer partitions —Glaisher-Franklin⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 74%●distinct values known / distinct values provided: 57%
Values
[1,2] => [1,0,1,0]
=> [1]
=> [1]
=> 1
[2,1] => [1,1,0,0]
=> []
=> ?
=> ? = 0
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,1,1]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [2]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,1]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [3,1,1,1]
=> 2
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,1,1]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [3,2]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [2,1,1]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [2,1]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [2,1]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [3,1,1]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,1]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [3,1]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,1,1]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [3]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [3]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,2,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,2,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,2,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,2,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,2,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,2,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,2,1,1,1]
=> 3
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [6,1,1,1]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1,1,1,1,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [3,1,1,1,1,1]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,1,1,1]
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,1,1,1]
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,2,2,2]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [6,2]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,2,2,1,1]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [3,2,1,1]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1,1,1]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1,1,1]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [2,2,2,1]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [3,2,1]
=> 3
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [2,2,2,1]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [3,2,1]
=> 3
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [2,1,1,1]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [2,1,1,1]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2,2,1,1]
=> 3
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [6,1,1]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2,1,1,1,1]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [5,3,2,2,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [3,2,2,2,2,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [6,5,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [6,2,2,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [5,2,2,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [2,2,2,2,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [5,3,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [5,3,2,2,2]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [3,2,2,2,2,2]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [6,5,2]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [5,2,2,2,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [5,3,2,2,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [3,2,2,2,2,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[2,1,3,5,4,6] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [6,5,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[2,1,4,3,5,6] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> [5,2,2,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[2,3,1,4,5,6] => [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> [5,3,2,2,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5}
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St000783
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 70%●distinct values known / distinct values provided: 57%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 70%●distinct values known / distinct values provided: 57%
Values
[1,2] => [1,0,1,0]
=> [1]
=> [1]
=> 1
[2,1] => [1,1,0,0]
=> []
=> ?
=> ? = 0
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,1,1]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [2]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,1]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [3,1,1,1]
=> 2
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [4,1]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [3,2]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [2,1,1]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [2,1]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [2,1]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [3,1,1]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [4]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [3,1]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,1,1]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [3]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [3]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,1,1,1,1,1,1,1]
=> 2
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [6,1,1,1]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [4,1,1,1,1,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [4,3,1]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [4,1,1,1]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [4,1,1,1]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,2,1,1,1,1]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [6,2]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1,1,1,1,1]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [3,2,1,1]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [4,2]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [4,2]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [2,1,1,1,1,1]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [3,2,1]
=> 3
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [2,1,1,1,1,1]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [3,2,1]
=> 3
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [2,1,1,1]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [2,1,1,1]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,1,1,1,1,1,1]
=> 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [6,1,1]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [4,1,1,1,1]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [5,3,1,1,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [8,3,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [6,5,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [6,1,1,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [6,3,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [6,3,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [5,4,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [8,4,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [4,3,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [6,4,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,6,5,3] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [6,4,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,5,3,6,4] => [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [4,1,1,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,5,4,6,3] => [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [4,1,1,1,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [5,3,2,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [8,3,2]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [6,5,2]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,3,2,5,6,4] => [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [6,2,1,1,1,1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5}
Description
The side length of the largest staircase partition fitting into a partition.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Matching statistic: St000771
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 86%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 86%
Values
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 0
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1}
[1,3,2] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[2,3,1] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,3,2,4] => [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[1,3,4,2] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[1,4,3,2] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[2,1,4,3] => [2,1,4,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[2,3,4,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => [2,4,1,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[2,4,3,1] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,2,4] => [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[3,1,4,2] => [2,1,4,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[3,2,4,1] => [2,1,4,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [2,4,1,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[3,4,2,1] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[4,1,3,2] => [4,1,3,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [4,2,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[4,2,3,1] => [4,1,3,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2}
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,4,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,4,5,3] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,2,5,4] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,4,5,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,3,5,2,4] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,5,4,2] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,4,2,5,3] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,4,3,5,2] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,4,5,3,2] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [1,5,3,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[1,5,3,4,2] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,3,5,4] => [2,1,3,5,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,4,5,3] => [2,1,3,5,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,5,3,4] => [2,1,5,3,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,3,1,5,4] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,4,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,3,4,5,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,1,4] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,3,5,4,1] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,1,3,5] => [2,4,1,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,4,1,5,3] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,4,3,5,1] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,4,5,3,1] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,1,3,4] => [2,5,1,3,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,5,1,4,3] => [2,5,1,4,3] => [5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,5,3,1,4] => [1,5,3,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[2,5,3,4,1] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,4,3,1] => [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,2,4,5] => [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,2,5,4] => [3,1,2,5,4] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,2,5] => [2,1,4,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,4,5,2] => [2,1,3,5,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,5,2,4] => [3,1,5,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,1,5,4,2] => [2,1,5,4,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,2,1,5,4] => [3,2,1,5,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,1,5] => [2,1,4,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,2,5,1,4] => [3,2,5,1,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,4,1,2,5] => [2,4,1,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,4,2,1,5] => [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,4,5,1,2] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,5,1,2,4] => [3,5,1,2,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,1,2,3,5] => [4,1,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,1,3,2,5] => [4,1,3,2,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,2,1,3,5] => [4,2,1,3,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,2,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,2,5,1,3] => [3,2,5,1,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,3,1,2,5] => [4,3,1,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000668
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 43% ●values known / values provided: 68%●distinct values known / distinct values provided: 43%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 43% ●values known / values provided: 68%●distinct values known / distinct values provided: 43%
Values
[1,2] => [1,1]
=> [1]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
[2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,2}
[3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[3,1,4,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[4,1,2,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,3}
[4,3,2,1] => [2,2]
=> [2]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 2
[2,1,4,5,3] => [3,2]
=> [2]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 2
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,3,5,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,5,1,3] => [3,2]
=> [2]
=> 2
[2,4,5,3,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,3,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,4,3,1] => [3,2]
=> [2]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 2
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 2
[3,4,1,5,2] => [3,2]
=> [2]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,4,2,5,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,4,5,2,1] => [3,2]
=> [2]
=> 2
[3,5,2,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
[3,5,2,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4}
Description
The least common multiple of the parts of the partition.
Matching statistic: St000937
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 71%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 71%
Values
[1,2] => [1,1]
=> [1]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
[2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,2}
[3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,4,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,2,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,2,1] => [2,2]
=> [2]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,3,5,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,4,5,1,3] => [3,2]
=> [2]
=> 2
[2,4,5,3,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,3,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[2,5,4,3,1] => [3,2]
=> [2]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[3,4,1,5,2] => [3,2]
=> [2]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,4,2,5,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,4,5,2,1] => [3,2]
=> [2]
=> 2
[3,5,2,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
[3,5,2,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
The following 61 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000444The length of the maximal rise of a Dyck path. St000939The number of characters of the symmetric group whose value on the partition is positive. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000028The number of stack-sorts needed to sort a permutation. St000846The maximal number of elements covering an element of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000451The length of the longest pattern of the form k 1 2. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St000993The multiplicity of the largest part of an integer partition. St000141The maximum drop size of a permutation. St001060The distinguishing index of a graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001389The number of partitions of the same length below the given integer partition. St000454The largest eigenvalue of a graph if it is integral. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St001128The exponens consonantiae of a partition. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001330The hat guessing number of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000143The largest repeated part of a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000455The second largest eigenvalue of a graph if it is integral. St000264The girth of a graph, which is not a tree. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001587Half of the largest even part of an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001896The number of right descents of a signed permutations. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001946The number of descents in a parking function. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!