Your data matches 61 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00094: Integer compositions to binary wordBinary words
St001421: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1 => 0
[1,1] => 11 => 0
[2] => 10 => 1
[1,1,1] => 111 => 0
[1,2] => 110 => 1
[2,1] => 101 => 1
[3] => 100 => 1
[1,1,1,1] => 1111 => 0
[1,1,2] => 1110 => 1
[1,2,1] => 1101 => 1
[1,3] => 1100 => 2
[2,1,1] => 1011 => 1
[2,2] => 1010 => 2
[3,1] => 1001 => 1
[4] => 1000 => 1
[1,1,1,1,1] => 11111 => 0
[1,1,1,2] => 11110 => 1
[1,1,2,1] => 11101 => 1
[1,1,3] => 11100 => 2
[1,2,1,1] => 11011 => 1
[1,2,2] => 11010 => 2
[1,3,1] => 11001 => 2
[1,4] => 11000 => 2
[2,1,1,1] => 10111 => 1
[2,1,2] => 10110 => 1
[2,2,1] => 10101 => 2
[2,3] => 10100 => 2
[3,1,1] => 10011 => 1
[3,2] => 10010 => 1
[4,1] => 10001 => 1
[5] => 10000 => 1
[1,1,1,1,1,1] => 111111 => 0
[1,1,1,1,2] => 111110 => 1
[1,1,1,2,1] => 111101 => 1
[1,1,1,3] => 111100 => 2
[1,1,2,1,1] => 111011 => 1
[1,1,2,2] => 111010 => 2
[1,1,3,1] => 111001 => 2
[1,1,4] => 111000 => 3
[1,2,1,1,1] => 110111 => 1
[1,2,1,2] => 110110 => 1
[1,2,2,1] => 110101 => 2
[1,2,3] => 110100 => 3
[1,3,1,1] => 110011 => 2
[1,3,2] => 110010 => 2
[1,4,1] => 110001 => 2
[1,5] => 110000 => 2
[2,1,1,1,1] => 101111 => 1
[2,1,1,2] => 101110 => 1
[2,1,2,1] => 101101 => 1
Description
Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word.
Matching statistic: St001933
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001933: Integer partitions ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 80%
Values
[1] => [1] => [[1],[]]
=> []
=> ? = 0
[1,1] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,1}
[1,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1}
[2,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1}
[3] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [4] => [[4],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[1,1,2] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[1,3] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[2,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[2,2] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[3,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[4] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,2,2}
[1,1,1,1,1] => [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[1,2,2] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[1,4] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[2,2,1] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[2,3] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[3,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[3,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[4,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[5] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,5] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,3] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,2,1,1] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[2,2,2] => [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,3,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,4] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,1,1] => [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,2,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,3] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[4,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[5,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[6] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,1,1,1] => [7] => [[7],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,1,1,2] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,3] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,2,2] => [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,3,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,4] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,5] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,2,1,1,1,1] => [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,1,2] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
[1,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
[2,1,1,1,2] => [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[2,1,1,3] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,2,1,1,1] => [2,3] => [[4,2],[1]]
=> [1]
=> 1
[2,2,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,2,2,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[2,2,3] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[3,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[3,3,1] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [[6,6],[5]]
=> [5]
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> 2
[1,1,1,1,1,3] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,2,2] => [4,2] => [[5,4],[3]]
=> [3]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,4] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 3
Description
The largest multiplicity of a part in an integer partition.
Matching statistic: St000993
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 80%
Values
[1] => [1] => [[1],[]]
=> []
=> ? = 0
[1,1] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,1}
[1,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1}
[2,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1}
[3] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [4] => [[4],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,2] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,3] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,2] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[3,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[4] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,1,1,1] => [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,2] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,2,1] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[5] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,5] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,3] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,2,1,1] => [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,2,2] => [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,3,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,4] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,1,1] => [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,1,2] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,3] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,2,2] => [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,3,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,4] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,1,1,1,2] => [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[2,2,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,2,2,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [[6,6],[5]]
=> [5]
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> 2
[1,1,1,1,1,3] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,2,2] => [4,2] => [[5,4],[3]]
=> [3]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,4] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 3
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 1
[1,1,1,2,3] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3,2] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,4,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,5] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 4
[1,1,2,1,3] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,4] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,3,2,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001568
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001568: Integer partitions ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 60%
Values
[1] => [1] => [[1],[]]
=> []
=> ? = 0
[1,1] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,1}
[1,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1}
[2,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1}
[3] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [4] => [[4],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,2] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,3] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,2] => [2] => [[2],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[3,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[4] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,1,1,1] => [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,2] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,2,1] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,1] => [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[5] => [1] => [[1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4] => [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,5] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,1,3] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,2,1,1] => [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,2,2] => [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,3,1] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[2,4] => [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,1,1] => [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[3,1,2] => [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,1,2] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1
[1,1,1,1,3] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,2,2] => [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,3,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,4] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,1,1,1,2] => [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[2,2,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,2,2,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [[6,6],[5]]
=> [5]
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> 1
[1,1,1,1,1,3] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> 1
[1,1,1,1,2,2] => [4,2] => [[5,4],[3]]
=> [3]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1
[1,1,1,1,4] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,2,1,2] => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 1
[1,1,1,2,3] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,3,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,3,2] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,4,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,5] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 2
[1,1,2,1,2,1] => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 2
[1,1,2,1,3] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,2,4] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,3,2,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
Description
The smallest positive integer that does not appear twice in the partition.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 60%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,1] => [2] => [1,1] => ([(0,1)],2)
=> 1
[2] => [1] => [1] => ([],1)
=> 0
[1,1,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1}
[2,1] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1}
[3] => [1] => [1] => ([],1)
=> 0
[1,1,1,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,2] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,2}
[1,2,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,2}
[1,3] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,2}
[2,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,2] => [2] => [1,1] => ([(0,1)],2)
=> 1
[3,1] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,2}
[4] => [1] => [1] => ([],1)
=> 0
[1,1,1,1,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,2] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[1,1,2,1] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[1,1,3] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[1,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,3,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[1,4] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[2,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,2] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[2,2,1] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[2,3] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[3,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,2] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[4,1] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2}
[5] => [1] => [1] => ([],1)
=> 0
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,1,2] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,1,1,2,1] => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,1,1,3] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,1,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,1,4] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,1,2] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,2,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,2,3] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,3,2] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,4,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[1,5] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[2,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[2,1,2,1] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[2,1,3] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[2,2,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[2,3,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[2,4] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[3,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,2] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[3,2,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[3,3] => [2] => [1,1] => ([(0,1)],2)
=> 1
[4,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[5,1] => [1,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3}
[6] => [1] => [1] => ([],1)
=> 0
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,1,1,1,1,2] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,1,2,1] => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,1,3] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,2,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,2,2] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3,1] => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,4] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,2] => [2,1,1,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,2,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,3] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,2] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,4,1] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,5] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,1,1,1] => [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,2,1] => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,3] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,2,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[7] => [1] => [1] => ([],1)
=> 0
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001630: Lattices ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 40%
Values
[1] => [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 0
[1,1] => [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[2] => [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,2] => [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[2,1] => [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[3] => [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,3] => [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,2,2}
[3,1] => [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[4] => [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,4] => [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,1] => [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[5] => [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,5] => [[5,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[5,1] => [[5,5],[4]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[6] => [[6],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
[1,1,2,3] => [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,3,3] => [[5,3,1],[2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,4,2] => [[5,4,1],[3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,2] => [[5,4,2],[3,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[2,4,1] => [[5,5,2],[4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[3,3,1] => [[5,5,3],[4,2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[3,4] => [[6,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001878: Lattices ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 40%
Values
[1] => [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 0
[1,1] => [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[2] => [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,2] => [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[2,1] => [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[3] => [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,3] => [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,2,2}
[3,1] => [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[4] => [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,4] => [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,1] => [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[5] => [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,5] => [[5,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[5,1] => [[5,5],[4]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[6] => [[6],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,1,2,3] => [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,3,3] => [[5,3,1],[2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,4,2] => [[5,4,1],[3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,2] => [[5,4,2],[3,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[2,4,1] => [[5,5,2],[4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[3,3,1] => [[5,5,3],[4,2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[3,4] => [[6,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000996
Mp00231: Integer compositions bounce pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000996: Permutations ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [2,1] => [2,1] => 1
[2] => [1,1,0,0]
=> [1,2] => [1,2] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,2] => [1,0,1,1,0,0]
=> [2,3,1] => [3,1,2] => 1
[2,1] => [1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => 1
[3] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [4,3,1,2] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [4,2,1,3] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,3,1,2,5] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [4,1,2,5,3] => 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [4,2,1,3,5] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,2,4,1,3] => 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [4,2,1,5,3] => 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,3,1,4,2] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => [4,3,1,2,6,5] => 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => [2,1,6,5,3,4] => 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => [4,1,2,6,5,3] => 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [2,1,4,3,5,6] => 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,5,6] => [4,3,1,2,5,6] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,5,6,3] => [2,1,6,3,4,5] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => [6,3,5,1,2,4] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4] => [2,1,6,4,3,5] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,3,1,2,5] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => [2,1,5,3,6,4] => 3
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => [6,4,1,2,5,3] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,5] => [2,1,6,5,4,3] => 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,6,1,3,4,5] => [6,5,4,3,1,2] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5] => [4,2,1,3,6,5] => 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5] => [3,1,4,2,6,5] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => [4,3,1,2,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5,7] => [2,1,6,5,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,7] => [4,1,2,6,5,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,6,7,5] => [4,3,1,2,7,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,6,7,3,5] => [2,1,6,3,4,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => [6,3,7,5,1,2,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,7,5,6] => [2,1,4,3,7,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,3,7,5,6] => [4,3,1,2,7,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,7,3,5,6] => [2,1,7,6,5,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,7,1,3,5,6] => [4,1,2,7,6,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,5,6,7] => [4,3,1,2,5,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,5,6,7,1,3] => [6,1,2,4,7,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4,7] => [2,1,6,4,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4,7] => [6,4,3,1,2,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4,7] => [2,1,5,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4,7] => [6,4,1,2,5,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,6,7,4] => [2,1,7,4,3,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,6,7,3,4] => [2,1,7,4,6,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => [5,1,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,6,3,7,4,5] => [2,1,6,4,3,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,6,1,3,7,4,5] => [6,4,3,1,2,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,6,7,3,4,5] => [2,1,7,5,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,6,7,1,3,4,5] => [6,4,1,2,7,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5,7] => [4,2,1,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5,7] => [3,1,4,2,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,1,4,6,2,5,7] => [6,5,2,1,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5,7] => [6,5,2,4,1,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [3,1,4,2,6,7,5] => [4,2,1,3,7,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [3,4,1,2,6,7,5] => [3,1,4,2,7,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,7,2,5] => [6,2,1,3,4,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,6,7,1,2,5] => [7,5,1,3,6,2,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,7,5,6] => [4,2,1,3,7,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,7,5,6] => [3,1,4,2,7,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,7,2,5,6] => [7,6,5,2,1,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [3,4,7,1,2,5,6] => [7,6,5,2,4,1,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,2,5,6,7] => [4,2,1,3,5,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [3,4,1,2,5,6,7] => [3,1,4,2,5,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,1,2] => [7,2,4,6,1,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3,7] => [4,2,1,6,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => [6,3,1,4,2,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [4,1,5,6,2,3,7] => [6,3,5,2,1,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,1,2,3,7] => [4,1,5,2,6,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [4,1,5,2,6,7,3] => [4,2,1,7,3,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [4,5,1,2,6,7,3] => [7,3,1,4,2,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [4,1,5,6,7,2,3] => [6,2,1,4,7,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => [7,3,6,2,5,1,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
Description
The number of exclusive left-to-right maxima of a permutation. This is the number of left-to-right maxima that are not right-to-left minima.
Matching statistic: St001637
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
Mp00193: Lattices to posetPosets
St001637: Posets ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 60%
Values
[1] => [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 0
[1,1] => [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[2] => [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,2] => [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[2,1] => [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[3] => [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,3] => [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,1] => [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[4] => [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,4] => [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[4,1] => [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[5] => [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,5] => [[5,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[5,1] => [[5,5],[4]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[6] => [[6],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,4] => [[4,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,1,2,3] => [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,4,1] => [[4,4,1,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,5] => [[5,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[1,3,3] => [[5,3,1],[2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,6] => [[6,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[2,3,2] => [[5,4,2],[3,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3}
Description
The number of (upper) dissectors of a poset.
Matching statistic: St001668
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
Mp00193: Lattices to posetPosets
St001668: Posets ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 60%
Values
[1] => [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 0
[1,1] => [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[2] => [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,2] => [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[2,1] => [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[3] => [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,3] => [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,1] => [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[4] => [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,4] => [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[4,1] => [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[5] => [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,2,2,2}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,5] => [[5,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[5,1] => [[5,5],[4]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[6] => [[6],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,2,2,3,3}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,4] => [[4,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,2,3] => [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,4,1] => [[4,4,1,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,5] => [[5,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 3
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[1,3,3] => [[5,3,1],[2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,6] => [[6,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,2] => [[5,4,2],[3,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}
Description
The number of points of the poset minus the width of the poset.
The following 51 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000884The number of isolated descents of a permutation. St000782The indicator function of whether a given perfect matching is an L & P matching. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000035The number of left outer peaks of a permutation. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St000454The largest eigenvalue of a graph if it is integral. St001729The number of visible descents of a permutation. St001928The number of non-overlapping descents in a permutation. St000470The number of runs in a permutation. St000619The number of cyclic descents of a permutation. St000260The radius of a connected graph. St001057The Grundy value of the game of creating an independent set in a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001271The competition number of a graph. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001128The exponens consonantiae of a partition. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St000741The Colin de Verdière graph invariant. St000456The monochromatic index of a connected graph. St000021The number of descents of a permutation. St000023The number of inner peaks of a permutation. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000099The number of valleys of a permutation, including the boundary. St000325The width of the tree associated to a permutation. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St001530The depth of a Dyck path. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001720The minimal length of a chain of small intervals in a lattice. St001769The reflection length of a signed permutation. St001864The number of excedances of a signed permutation. St000455The second largest eigenvalue of a graph if it is integral.