Your data matches 213 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001476: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5
Description
The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1).
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000207: Integer partitions ⟶ ℤResult quality: 27% values known / values provided: 52%distinct values known / distinct values provided: 27%
Values
([],1)
=> []
=> ?
=> ?
=> ? = 1
([],2)
=> []
=> ?
=> ?
=> ? ∊ {1,1}
([(0,1)],2)
=> [1]
=> []
=> []
=> ? ∊ {1,1}
([],3)
=> []
=> ?
=> ?
=> ? ∊ {1,1,1}
([(1,2)],3)
=> [1]
=> []
=> []
=> ? ∊ {1,1,1}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {1,1,1}
([],4)
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,2}
([(2,3)],4)
=> [1]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2}
([],5)
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(3,4)],5)
=> [1]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,3,3,3,4,5,5,5}
([],6)
=> []
=> ?
=> ?
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 8
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 8
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 8
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 8
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> [1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> [1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has all vertices in integer lattice points.
Mp00117: Graphs Ore closureGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00111: Graphs complementGraphs
St000771: Graphs ⟶ ℤResult quality: 27% values known / values provided: 49%distinct values known / distinct values provided: 27%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1}
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,2}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,2}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,2}
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,4,4,4,4,5,5,5}
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001192
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001192: Dyck paths ⟶ ℤResult quality: 27% values known / values provided: 47%distinct values known / distinct values provided: 27%
Values
([],1)
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> 1
([],3)
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([],6)
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001289: Dyck paths ⟶ ℤResult quality: 27% values known / values provided: 47%distinct values known / distinct values provided: 27%
Values
([],1)
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> 1
([],3)
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([],6)
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. This n-fold tensor product seems to be always injective.
Matching statistic: St001006
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001006: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 47%distinct values known / distinct values provided: 13%
Values
([],1)
=> []
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> []
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([],6)
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001013
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001013: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 47%distinct values known / distinct values provided: 13%
Values
([],1)
=> []
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> []
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([],6)
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001188
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001188: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 47%distinct values known / distinct values provided: 13%
Values
([],1)
=> []
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> []
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([],6)
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. Also the number of simple modules that are isolated vertices in the sense of 4.5. (4) in the reference.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001194: Dyck paths ⟶ ℤResult quality: 27% values known / values provided: 47%distinct values known / distinct values provided: 27%
Values
([],1)
=> []
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> []
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,4,4,5,5,5}
([],6)
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module
Matching statistic: St001244
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001244: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 47%distinct values known / distinct values provided: 13%
Values
([],1)
=> []
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? ∊ {2,2}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2}
([],5)
=> []
=> []
=> []
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,5,5,5}
([],6)
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,11,12,12,13,13,13,14,14,14,14,16,16,16,16}
Description
The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. For the projective dimension see [[St001007]] and for 1-regularity see [[St001126]]. After applying the inverse zeta map [[Mp00032]], this statistic matches the number of rises of length at least 2 [[St000659]].
The following 203 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000299The number of nonisomorphic vertex-induced subtrees. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St001642The Prague dimension of a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001305The number of induced cycles on four vertices in a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001722The number of minimal chains with small intervals between a binary word and the top element. St001578The minimal number of edges to add or remove to make a graph a line graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001339The irredundance number of a graph. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000079The number of alternating sign matrices for a given Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001256Number of simple reflexive modules that are 2-stable reflexive. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001480The number of simple summands of the module J^2/J^3. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000003The number of standard Young tableaux of the partition. St000010The length of the partition. St000015The number of peaks of a Dyck path. St000026The position of the first return of a Dyck path. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000075The orbit size of a standard tableau under promotion. St000120The number of left tunnels of a Dyck path. St000147The largest part of an integer partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000182The number of permutations whose cycle type is the given integer partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000331The number of upper interactions of a Dyck path. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000378The diagonal inversion number of an integer partition. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000517The Kreweras number of an integer partition. St000531The leading coefficient of the rook polynomial of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000734The last entry in the first row of a standard tableau. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000783The side length of the largest staircase partition fitting into a partition. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000876The number of factors in the Catalan decomposition of a binary word. St000935The number of ordered refinements of an integer partition. St000947The major index east count of a Dyck path. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001161The major index north count of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001530The depth of a Dyck path. St001595The number of standard Young tableaux of the skew partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001645The pebbling number of a connected graph. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001710The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation. St001733The number of weak left to right maxima of a Dyck path. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001955The number of natural descents for set-valued two row standard Young tableaux. St000259The diameter of a connected graph. St000260The radius of a connected graph. St001487The number of inner corners of a skew partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000939The number of characters of the symmetric group whose value on the partition is positive. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001360The number of covering relations in Young's lattice below a partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001527The cyclic permutation representation number of an integer partition. St001563The value of the power-sum symmetric function evaluated at 1. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000069The number of maximal elements of a poset. St000456The monochromatic index of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001665The number of pure excedances of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St000068The number of minimal elements in a poset. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001060The distinguishing index of a graph. St001118The acyclic chromatic index of a graph. St000284The Plancherel distribution on integer partitions. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000815The number of semistandard Young tableaux of partition weight of given shape. St000937The number of positive values of the symmetric group character corresponding to the partition. St001128The exponens consonantiae of a partition. St000420The number of Dyck paths that are weakly above a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000706The product of the factorials of the multiplicities of an integer partition. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000993The multiplicity of the largest part of an integer partition. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001568The smallest positive integer that does not appear twice in the partition. St001820The size of the image of the pop stack sorting operator. St001846The number of elements which do not have a complement in the lattice. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001877Number of indecomposable injective modules with projective dimension 2. St000455The second largest eigenvalue of a graph if it is integral. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000618The number of self-evacuating tableaux of given shape. St000781The number of proper colouring schemes of a Ferrers diagram. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St000916The packing number of a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St000370The genus of a graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St001793The difference between the clique number and the chromatic number of a graph.