searching the database
Your data matches 98 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001536
St001536: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 2
[2,3,1,4] => 0
[2,3,4,1] => 4
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 2
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 2
[1,3,4,2,5] => 0
[1,3,4,5,2] => 4
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 0
Description
The number of cyclic misalignments of a permutation.
The pair $(i,j)$ is a cyclic alignment of a permutation $\pi$ if $i, \pi(i), j, \pi(j)$ are cyclically ordered and all distinct, see Section 5 of [1].
Matching statistic: St001248
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001248: Integer partitions ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 57%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001248: Integer partitions ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 57%
Values
[1] => [1,0]
=> [[1],[]]
=> []
=> ? = 0
[1,2] => [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,0}
[2,1] => [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0}
[1,3,2] => [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0}
[2,1,3] => [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0}
[3,1,2] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0}
[3,2,1] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 2
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> 0
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 2
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 0
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 2
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 2
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 0
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 0
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 0
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 0
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
Description
Sum of the even parts of a partition.
Matching statistic: St000936
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 52%●distinct values known / distinct values provided: 29%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 52%●distinct values known / distinct values provided: 29%
Values
[1] => [] => []
=> ?
=> ? = 0
[1,2] => [1] => [1]
=> []
=> ? ∊ {0,0}
[2,1] => [1] => [1]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 0
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 0
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 0
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,5,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,1,5] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,5,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 0
[2,5,3,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 0
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 0
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 0
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 0
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 0
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 0
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 0
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 0
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 0
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 0
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 0
[4,3,2,1,5] => [4,3,2,1] => [2,2]
=> [2]
=> 0
[4,3,2,5,1] => [4,3,2,1] => [2,2]
=> [2]
=> 0
[4,3,5,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 0
[4,5,2,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 0
[4,5,3,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 0
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[5,1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[5,1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[5,1,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[5,2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[5,2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 0
Description
The number of even values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugace class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $4$.
It is shown in [1] that the sum of the values of the statistic over all partitions of a given size is even.
Matching statistic: St000454
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 0
[1,2] => ([],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],1)
=> 0
[1,2,3] => ([],3)
=> ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> 0
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> 0
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 0
[1,2,3,4] => ([],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> 0
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> 0
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> 0
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,2,3,4,5] => ([],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> 0
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> 0
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> 0
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> 0
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000422
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 0
[1,2] => ([],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],1)
=> 0
[1,2,3] => ([],3)
=> ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> 0
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> 0
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 0
[1,2,3,4] => ([],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> 0
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> 0
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> 0
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,2,3,4,5] => ([],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> 0
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> 0
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> 0
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> 0
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000455
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 44%●distinct values known / distinct values provided: 14%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 44%●distinct values known / distinct values provided: 14%
Values
[1] => [1] => ([],1)
=> ? = 0
[1,2] => [2] => ([],2)
=> ? ∊ {0,0}
[2,1] => [2] => ([],2)
=> ? ∊ {0,0}
[1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0}
[1,3,2] => [1,2] => ([(1,2)],3)
=> 0
[2,1,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0}
[2,3,1] => [3] => ([],3)
=> ? ∊ {0,0,0,0}
[3,1,2] => [3] => ([],3)
=> ? ∊ {0,0,0,0}
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> 0
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> 0
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> 0
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[2,1,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[2,3,1,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[2,3,4,1] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[2,4,1,3] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[3,1,2,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[3,4,1,2] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4,1,2,3] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> 0
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,2,2,4}
[1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> 0
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> 0
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> 0
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> 0
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> 0
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> 0
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> 0
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[2,3,4,1,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,4,1,3,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[2,4,5,1,3] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,5,1,3,4] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,5,3,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,5,4,1,3] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[3,1,4,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,4,5,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,5,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,2,1,5,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,4,1,2,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,4,5,1,2] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,5,1,2,4] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,5,4,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[4,1,2,3,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[4,1,5,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[4,2,5,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[4,3,1,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001279
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001279: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 44%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001279: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 44%●distinct values known / distinct values provided: 29%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The sum of the parts of an integer partition that are at least two.
Matching statistic: St001912
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001912: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 44%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001912: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 44%●distinct values known / distinct values provided: 29%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The length of the preperiod in Bulgarian solitaire corresponding to an integer partition.
Bulgarian solitaire is the dynamical system where a move consists of removing the first column of the Ferrers diagram and inserting it as a row.
Matching statistic: St001435
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 14% ●values known / values provided: 42%●distinct values known / distinct values provided: 14%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 14% ●values known / values provided: 42%●distinct values known / distinct values provided: 14%
Values
[1] => [1,0]
=> []
=> [[],[]]
=> ? = 0
[1,2] => [1,0,1,0]
=> [1]
=> [[1],[]]
=> 0
[2,1] => [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
Description
The number of missing boxes in the first row.
Matching statistic: St001438
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001438: Skew partitions ⟶ ℤResult quality: 14% ●values known / values provided: 42%●distinct values known / distinct values provided: 14%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001438: Skew partitions ⟶ ℤResult quality: 14% ●values known / values provided: 42%●distinct values known / distinct values provided: 14%
Values
[1] => [1,0]
=> []
=> [[],[]]
=> ? = 0
[1,2] => [1,0,1,0]
=> [1]
=> [[1],[]]
=> 0
[2,1] => [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,2,2,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,10}
Description
The number of missing boxes of a skew partition.
The following 88 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000929The constant term of the character polynomial of an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001570The minimal number of edges to add to make a graph Hamiltonian. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St001330The hat guessing number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001875The number of simple modules with projective dimension at most 1. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001490The number of connected components of a skew partition. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St000068The number of minimal elements in a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000259The diameter of a connected graph. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001568The smallest positive integer that does not appear twice in the partition. St001846The number of elements which do not have a complement in the lattice. St001820The size of the image of the pop stack sorting operator. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St001249Sum of the odd parts of a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001621The number of atoms of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001902The number of potential covers of a poset. St001472The permanent of the Coxeter matrix of the poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001095The number of non-isomorphic posets with precisely one further covering relation. St000264The girth of a graph, which is not a tree. St001739The number of graphs with the same edge polytope as the given graph. St000095The number of triangles of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St000449The number of pairs of vertices of a graph with distance 4. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001765The number of connected components of the friends and strangers graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!