searching the database
Your data matches 234 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001156
St001156: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1 = 0 + 1
['A',2]
=> 1 = 0 + 1
['B',2]
=> 1 = 0 + 1
['G',2]
=> 2 = 1 + 1
Description
The Dynkin index of the Lie algebra of given type.
This is the greatest common divisor of the Dynkin indices of the representations of the Lie algebra. It is computed in [2, prop.2.6].
Matching statistic: St000137
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000137: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000137: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
Description
The Grundy value of an integer partition.
Consider the two-player game on an integer partition.
In each move, a player removes either a box, or a 2x2-configuration of boxes such that the resulting diagram is still a partition.
The first player that cannot move lose. This happens exactly when the empty partition is reached.
The grundy value of an integer partition is defined as the grundy value of this two-player game as defined in [1].
This game was described to me during Norcom 2013, by Urban Larsson, and it seems to be quite difficult to give a good description of the partitions with Grundy value 0.
Matching statistic: St000142
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 0
Description
The number of even parts of a partition.
Matching statistic: St000148
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
Description
The number of odd parts of a partition.
Matching statistic: St000212
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000212: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000212: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
Description
The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row.
Summing over all partitions of $n$ yields the sequence
$$1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, \dots$$
which is [[oeis:A237770]].
The references in this sequence of the OEIS indicate a connection with Baxter permutations.
Matching statistic: St000512
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000512: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000512: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
Description
The number of invariant subsets of size 3 when acting with a permutation of given cycle type.
Matching statistic: St000513
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000513: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000513: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 0
Description
The number of invariant subsets of size 2 when acting with a permutation of given cycle type.
Matching statistic: St000671
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
Description
The maximin edge-connectivity for choosing a subgraph.
This is $\max_X \min(\lambda(G[X]), \lambda(G[V\setminus X]))$, where $X$ ranges over all subsets of the vertex set $V$ and $\lambda$ is the edge-connectivity of a graph.
Matching statistic: St000749
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 0
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree.
For example, restricting $S_{(6,3)}$ to $\mathfrak S_8$ yields $$S_{(5,3)}\oplus S_{(6,2)}$$ of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to $\mathfrak S_7$ yields $$S_{(4,3)}\oplus 2S_{(5,2)}\oplus S_{(6,1)}$$ of degrees 14, 14 and 6. However, restricting to $\mathfrak S_6$ yields
$$S_{(3,3)}\oplus 3S_{(4,2)}\oplus 3S_{(5,1)}\oplus S_6$$ of degrees 5,9,5 and 1. Therefore, the statistic on the partition $(6,3)$ gives 3.
This is related to $2$-saturations of Welter's game, see [1, Corollary 1.2].
Matching statistic: St000752
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000752: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000752: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 0
Description
The Grundy value for the game 'Couples are forever' on an integer partition.
Two players alternately choose a part of the partition greater than two, and split it into two parts. The player facing a partition with all parts at most two looses.
The following 224 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001092The number of distinct even parts of a partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001252Half the sum of the even parts of a partition. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001383The BG-rank of an integer partition. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001657The number of twos in an integer partition. St001827The number of two-component spanning forests of a graph. St000273The domination number of a graph. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000916The packing number of a graph. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001829The common independence number of a graph. St001881The number of factors of a lattice as a Cartesian product of lattices. St000759The smallest missing part in an integer partition. St000091The descent variation of a composition. St000143The largest repeated part of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000150The floored half-sum of the multiplicities of a partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000292The number of ascents of a binary word. St000348The non-inversion sum of a binary word. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000449The number of pairs of vertices of a graph with distance 4. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000552The number of cut vertices of a graph. St000628The balance of a binary word. St000658The number of rises of length 2 of a Dyck path. St000660The number of rises of length at least 3 of a Dyck path. St000682The Grundy value of Welter's game on a binary word. St000691The number of changes of a binary word. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000761The number of ascents in an integer composition. St000766The number of inversions of an integer composition. St000768The number of peaks in an integer composition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000877The depth of the binary word interpreted as a path. St000944The 3-degree of an integer partition. St000992The alternating sum of the parts of an integer partition. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001175The size of a partition minus the hook length of the base cell. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001271The competition number of a graph. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001350Half of the Albertson index of a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001395The number of strictly unfriendly partitions of a graph. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001423The number of distinct cubes in a binary word. St001479The number of bridges of a graph. St001484The number of singletons of an integer partition. St001524The degree of symmetry of a binary word. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001578The minimal number of edges to add or remove to make a graph a line graph. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001691The number of kings in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001742The difference of the maximal and the minimal degree in a graph. St001783The number of odd automorphisms of a graph. St001797The number of overfull subgraphs of a graph. St001826The maximal number of leaves on a vertex of a graph. St001871The number of triconnected components of a graph. St000047The number of standard immaculate tableaux of a given shape. St000183The side length of the Durfee square of an integer partition. St000271The chromatic index of a graph. St000326The position of the first one in a binary word after appending a 1 at the end. St000381The largest part of an integer composition. St000529The number of permutations whose descent word is the given binary word. St000535The rank-width of a graph. St000543The size of the conjugacy class of a binary word. St000544The cop number of a graph. St000553The number of blocks of a graph. St000626The minimal period of a binary word. St000627The exponent of a binary word. St000630The length of the shortest palindromic decomposition of a binary word. St000758The length of the longest staircase fitting into an integer composition. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000764The number of strong records in an integer composition. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000808The number of up steps of the associated bargraph. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000897The number of different multiplicities of parts of an integer partition. St000903The number of different parts of an integer composition. St000905The number of different multiplicities of parts of an integer composition. St000917The open packing number of a graph. St000920The logarithmic height of a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000983The length of the longest alternating subword. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001057The Grundy value of the game of creating an independent set in a graph. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001111The weak 2-dynamic chromatic number of a graph. St001112The 3-weak dynamic number of a graph. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001256Number of simple reflexive modules that are 2-stable reflexive. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001313The number of Dyck paths above the lattice path given by a binary word. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001393The induced matching number of a graph. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001527The cyclic permutation representation number of an integer partition. St001642The Prague dimension of a graph. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001716The 1-improper chromatic number of a graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001765The number of connected components of the friends and strangers graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000011The number of touch points (or returns) of a Dyck path. St000445The number of rises of length 1 of a Dyck path. St000469The distinguishing number of a graph. St000617The number of global maxima of a Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001261The Castelnuovo-Mumford regularity of a graph. St001523The degree of symmetry of a Dyck path. St001733The number of weak left to right maxima of a Dyck path. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000181The number of connected components of the Hasse diagram for the poset. St001964The interval resolution global dimension of a poset. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000928The sum of the coefficients of the character polynomial of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001060The distinguishing index of a graph. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000929The constant term of the character polynomial of an integer partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001638The book thickness of a graph. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000287The number of connected components of a graph. St000310The minimal degree of a vertex of a graph. St000675The number of centered multitunnels of a Dyck path. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St000993The multiplicity of the largest part of an integer partition. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001118The acyclic chromatic index of a graph. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001518The number of graphs with the same ordinary spectrum as the given graph. St001568The smallest positive integer that does not appear twice in the partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001624The breadth of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001722The number of minimal chains with small intervals between a binary word and the top element. St001820The size of the image of the pop stack sorting operator. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000286The number of connected components of the complement of a graph. St000311The number of vertices of odd degree in a graph. St000478Another weight of a partition according to Alladi. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001002Number of indecomposable modules with projective and injective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!