Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001700
St001700: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1
['A',2]
=> 3
['B',2]
=> 4
['G',2]
=> 4
['A',3]
=> 6
['B',3]
=> 8
['C',3]
=> 8
['A',4]
=> 9
['B',4]
=> 12
['C',4]
=> 12
['D',4]
=> 11
['F',4]
=> 16
['A',5]
=> 13
['B',5]
=> 16
['C',5]
=> 16
['D',5]
=> 16
Description
The maximum degree of the Hasse diagram of the strong Bruhat order in the Weyl group of the Cartan type.
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000452: Graphs ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 40%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {8,8}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {8,8}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,3),(0,8),(0,9),(1,2),(1,7),(1,9),(2,5),(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {9,11,12,12,16}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,1),(0,4),(0,12),(0,13),(0,14),(0,15),(1,4),(1,8),(1,12),(1,13),(1,14),(1,15),(2,3),(2,6),(2,7),(2,10),(2,11),(2,13),(2,14),(2,15),(3,6),(3,7),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,14),(6,15),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {9,11,12,12,16}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,1),(0,4),(0,12),(0,13),(0,14),(0,15),(1,4),(1,8),(1,12),(1,13),(1,14),(1,15),(2,3),(2,6),(2,7),(2,10),(2,11),(2,13),(2,14),(2,15),(3,6),(3,7),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,14),(6,15),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {9,11,12,12,16}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,7),(0,8),(0,10),(0,11),(1,4),(1,6),(1,8),(1,10),(1,11),(2,3),(2,6),(2,7),(2,10),(2,11),(3,6),(3,7),(3,9),(3,10),(3,11),(4,6),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {9,11,12,12,16}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,3),(0,4),(0,7),(0,8),(0,11),(0,15),(0,16),(0,17),(0,18),(0,19),(0,20),(0,21),(0,22),(0,23),(1,2),(1,5),(1,9),(1,10),(1,11),(1,15),(1,16),(1,17),(1,18),(1,19),(1,20),(1,21),(1,22),(1,23),(2,5),(2,6),(2,9),(2,10),(2,12),(2,13),(2,14),(2,16),(2,19),(2,20),(2,21),(2,22),(2,23),(3,4),(3,7),(3,8),(3,11),(3,14),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(3,21),(3,22),(3,23),(4,6),(4,7),(4,8),(4,12),(4,13),(4,14),(4,15),(4,18),(4,19),(4,20),(4,21),(4,22),(4,23),(5,9),(5,10),(5,11),(5,13),(5,15),(5,16),(5,17),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(6,8),(6,10),(6,12),(6,13),(6,14),(6,15),(6,16),(6,17),(6,18),(6,19),(6,20),(6,21),(6,22),(6,23),(7,8),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,22),(8,23),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(10,12),(10,13),(10,14),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,17),(15,18),(15,20),(15,21),(15,22),(15,23),(16,17),(16,19),(16,20),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(18,19),(18,20),(18,21),(18,22),(18,23),(19,20),(19,21),(19,22),(19,23),(20,21),(20,22),(20,23),(21,22),(21,23),(22,23)],24)
=> ? ∊ {9,11,12,12,16}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,3),(0,9),(0,13),(0,14),(1,2),(1,8),(1,12),(1,14),(2,6),(2,8),(2,12),(2,14),(3,7),(3,9),(3,13),(3,14),(4,6),(4,8),(4,10),(4,11),(4,12),(4,13),(4,14),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,12),(6,13),(6,14),(7,9),(7,10),(7,12),(7,13),(7,14),(8,11),(8,12),(8,14),(9,11),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,14),(13,14)],15)
=> ? ∊ {13,16,16,16}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,1),(0,2),(0,8),(0,20),(0,21),(0,22),(0,23),(0,24),(1,2),(1,7),(1,8),(1,20),(1,21),(1,22),(1,23),(1,24),(2,6),(2,7),(2,8),(2,17),(2,20),(2,21),(2,22),(2,23),(2,24),(3,4),(3,5),(3,10),(3,11),(3,15),(3,16),(3,18),(3,19),(3,21),(3,22),(3,23),(3,24),(4,5),(4,10),(4,11),(4,12),(4,13),(4,15),(4,16),(4,17),(4,19),(4,22),(4,23),(4,24),(5,10),(5,11),(5,13),(5,14),(5,15),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(5,24),(6,7),(6,8),(6,9),(6,14),(6,15),(6,17),(6,18),(6,19),(6,20),(6,21),(6,22),(6,23),(6,24),(7,8),(7,9),(7,14),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,12),(8,16),(8,17),(8,20),(8,21),(8,22),(8,23),(8,24),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,13),(10,14),(10,15),(10,16),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(10,24),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(11,21),(11,22),(11,23),(11,24),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,23),(15,24),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(17,24),(18,19),(18,21),(18,22),(18,23),(18,24),(19,22),(19,23),(19,24),(20,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {13,16,16,16}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,1),(0,2),(0,8),(0,20),(0,21),(0,22),(0,23),(0,24),(1,2),(1,7),(1,8),(1,20),(1,21),(1,22),(1,23),(1,24),(2,6),(2,7),(2,8),(2,17),(2,20),(2,21),(2,22),(2,23),(2,24),(3,4),(3,5),(3,10),(3,11),(3,15),(3,16),(3,18),(3,19),(3,21),(3,22),(3,23),(3,24),(4,5),(4,10),(4,11),(4,12),(4,13),(4,15),(4,16),(4,17),(4,19),(4,22),(4,23),(4,24),(5,10),(5,11),(5,13),(5,14),(5,15),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(5,24),(6,7),(6,8),(6,9),(6,14),(6,15),(6,17),(6,18),(6,19),(6,20),(6,21),(6,22),(6,23),(6,24),(7,8),(7,9),(7,14),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,12),(8,16),(8,17),(8,20),(8,21),(8,22),(8,23),(8,24),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,13),(10,14),(10,15),(10,16),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(10,24),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(11,21),(11,22),(11,23),(11,24),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,23),(15,24),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(17,24),(18,19),(18,21),(18,22),(18,23),(18,24),(19,22),(19,23),(19,24),(20,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {13,16,16,16}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,1),(0,7),(0,12),(0,13),(0,17),(0,18),(0,19),(1,7),(1,11),(1,12),(1,13),(1,17),(1,18),(1,19),(2,5),(2,6),(2,9),(2,13),(2,14),(2,16),(2,17),(2,18),(2,19),(3,4),(3,6),(3,8),(3,12),(3,14),(3,16),(3,17),(3,18),(3,19),(4,6),(4,8),(4,12),(4,14),(4,15),(4,16),(4,17),(4,18),(4,19),(5,6),(5,9),(5,13),(5,14),(5,15),(5,16),(5,17),(5,18),(5,19),(6,14),(6,15),(6,16),(6,17),(6,18),(6,19),(7,10),(7,11),(7,12),(7,13),(7,15),(7,17),(7,18),(7,19),(8,10),(8,11),(8,12),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(9,10),(9,11),(9,13),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(10,17),(10,18),(10,19),(11,12),(11,13),(11,14),(11,16),(11,17),(11,18),(11,19),(12,15),(12,17),(12,18),(12,19),(13,15),(13,17),(13,18),(13,19),(14,15),(14,16),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> ? ∊ {13,16,16,16}
Description
The number of distinct eigenvalues of a graph.
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
St001281: Graphs ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 30%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ? = 1 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 4 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 4 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 6 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? ∊ {8,8} - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? ∊ {8,8} - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? ∊ {9,11,12,12,16} - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ? ∊ {9,11,12,12,16} - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ? ∊ {9,11,12,12,16} - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ? ∊ {9,11,12,12,16} - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ? ∊ {9,11,12,12,16} - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ? ∊ {13,16,16,16} - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ? ∊ {13,16,16,16} - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ? ∊ {13,16,16,16} - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ? ∊ {13,16,16,16} - 2
Description
The normalized isoperimetric number of a graph. The isoperimetric number, or Cheeger constant, of a graph $G$ is $$ i(G) = \min\left\{\frac{|\partial A|}{|A|}\ : \ A\subseteq V(G), 0 < |A|\leq |V(G)|/2\right\}, $$ where $$ \partial A := \{(x, y)\in E(G)\ : \ x\in A, y\in V(G)\setminus A \}. $$ This statistic is $i(G)\cdot\lfloor n/2\rfloor$.
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001117: Graphs ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 40%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {8,8} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {8,8} - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,3),(0,8),(0,9),(1,2),(1,7),(1,9),(2,5),(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {9,11,12,12,16} - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,1),(0,4),(0,12),(0,13),(0,14),(0,15),(1,4),(1,8),(1,12),(1,13),(1,14),(1,15),(2,3),(2,6),(2,7),(2,10),(2,11),(2,13),(2,14),(2,15),(3,6),(3,7),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,14),(6,15),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {9,11,12,12,16} - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,1),(0,4),(0,12),(0,13),(0,14),(0,15),(1,4),(1,8),(1,12),(1,13),(1,14),(1,15),(2,3),(2,6),(2,7),(2,10),(2,11),(2,13),(2,14),(2,15),(3,6),(3,7),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,14),(6,15),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {9,11,12,12,16} - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,7),(0,8),(0,10),(0,11),(1,4),(1,6),(1,8),(1,10),(1,11),(2,3),(2,6),(2,7),(2,10),(2,11),(3,6),(3,7),(3,9),(3,10),(3,11),(4,6),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {9,11,12,12,16} - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,3),(0,4),(0,7),(0,8),(0,11),(0,15),(0,16),(0,17),(0,18),(0,19),(0,20),(0,21),(0,22),(0,23),(1,2),(1,5),(1,9),(1,10),(1,11),(1,15),(1,16),(1,17),(1,18),(1,19),(1,20),(1,21),(1,22),(1,23),(2,5),(2,6),(2,9),(2,10),(2,12),(2,13),(2,14),(2,16),(2,19),(2,20),(2,21),(2,22),(2,23),(3,4),(3,7),(3,8),(3,11),(3,14),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(3,21),(3,22),(3,23),(4,6),(4,7),(4,8),(4,12),(4,13),(4,14),(4,15),(4,18),(4,19),(4,20),(4,21),(4,22),(4,23),(5,9),(5,10),(5,11),(5,13),(5,15),(5,16),(5,17),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(6,8),(6,10),(6,12),(6,13),(6,14),(6,15),(6,16),(6,17),(6,18),(6,19),(6,20),(6,21),(6,22),(6,23),(7,8),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,22),(8,23),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(10,12),(10,13),(10,14),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,17),(15,18),(15,20),(15,21),(15,22),(15,23),(16,17),(16,19),(16,20),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(18,19),(18,20),(18,21),(18,22),(18,23),(19,20),(19,21),(19,22),(19,23),(20,21),(20,22),(20,23),(21,22),(21,23),(22,23)],24)
=> ? ∊ {9,11,12,12,16} - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,3),(0,9),(0,13),(0,14),(1,2),(1,8),(1,12),(1,14),(2,6),(2,8),(2,12),(2,14),(3,7),(3,9),(3,13),(3,14),(4,6),(4,8),(4,10),(4,11),(4,12),(4,13),(4,14),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,12),(6,13),(6,14),(7,9),(7,10),(7,12),(7,13),(7,14),(8,11),(8,12),(8,14),(9,11),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,14),(13,14)],15)
=> ? ∊ {13,16,16,16} - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,1),(0,2),(0,8),(0,20),(0,21),(0,22),(0,23),(0,24),(1,2),(1,7),(1,8),(1,20),(1,21),(1,22),(1,23),(1,24),(2,6),(2,7),(2,8),(2,17),(2,20),(2,21),(2,22),(2,23),(2,24),(3,4),(3,5),(3,10),(3,11),(3,15),(3,16),(3,18),(3,19),(3,21),(3,22),(3,23),(3,24),(4,5),(4,10),(4,11),(4,12),(4,13),(4,15),(4,16),(4,17),(4,19),(4,22),(4,23),(4,24),(5,10),(5,11),(5,13),(5,14),(5,15),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(5,24),(6,7),(6,8),(6,9),(6,14),(6,15),(6,17),(6,18),(6,19),(6,20),(6,21),(6,22),(6,23),(6,24),(7,8),(7,9),(7,14),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,12),(8,16),(8,17),(8,20),(8,21),(8,22),(8,23),(8,24),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,13),(10,14),(10,15),(10,16),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(10,24),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(11,21),(11,22),(11,23),(11,24),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,23),(15,24),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(17,24),(18,19),(18,21),(18,22),(18,23),(18,24),(19,22),(19,23),(19,24),(20,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {13,16,16,16} - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,1),(0,2),(0,8),(0,20),(0,21),(0,22),(0,23),(0,24),(1,2),(1,7),(1,8),(1,20),(1,21),(1,22),(1,23),(1,24),(2,6),(2,7),(2,8),(2,17),(2,20),(2,21),(2,22),(2,23),(2,24),(3,4),(3,5),(3,10),(3,11),(3,15),(3,16),(3,18),(3,19),(3,21),(3,22),(3,23),(3,24),(4,5),(4,10),(4,11),(4,12),(4,13),(4,15),(4,16),(4,17),(4,19),(4,22),(4,23),(4,24),(5,10),(5,11),(5,13),(5,14),(5,15),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(5,24),(6,7),(6,8),(6,9),(6,14),(6,15),(6,17),(6,18),(6,19),(6,20),(6,21),(6,22),(6,23),(6,24),(7,8),(7,9),(7,14),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,12),(8,16),(8,17),(8,20),(8,21),(8,22),(8,23),(8,24),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,13),(10,14),(10,15),(10,16),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(10,24),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(11,21),(11,22),(11,23),(11,24),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,23),(15,24),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(17,24),(18,19),(18,21),(18,22),(18,23),(18,24),(19,22),(19,23),(19,24),(20,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {13,16,16,16} - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,1),(0,7),(0,12),(0,13),(0,17),(0,18),(0,19),(1,7),(1,11),(1,12),(1,13),(1,17),(1,18),(1,19),(2,5),(2,6),(2,9),(2,13),(2,14),(2,16),(2,17),(2,18),(2,19),(3,4),(3,6),(3,8),(3,12),(3,14),(3,16),(3,17),(3,18),(3,19),(4,6),(4,8),(4,12),(4,14),(4,15),(4,16),(4,17),(4,18),(4,19),(5,6),(5,9),(5,13),(5,14),(5,15),(5,16),(5,17),(5,18),(5,19),(6,14),(6,15),(6,16),(6,17),(6,18),(6,19),(7,10),(7,11),(7,12),(7,13),(7,15),(7,17),(7,18),(7,19),(8,10),(8,11),(8,12),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(9,10),(9,11),(9,13),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(10,17),(10,18),(10,19),(11,12),(11,13),(11,14),(11,16),(11,17),(11,18),(11,19),(12,15),(12,17),(12,18),(12,19),(13,15),(13,17),(13,18),(13,19),(14,15),(14,16),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> ? ∊ {13,16,16,16} - 1
Description
The game chromatic index of a graph. Two players, Alice and Bob, take turns colouring properly any uncolored edge of the graph. Alice begins. If it is not possible for either player to colour a edge, then Bob wins. If the graph is completely colored, Alice wins. The game chromatic index is the smallest number of colours such that Alice has a winning strategy.
Matching statistic: St001563
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St001563: Integer partitions ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 20%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 4
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> ? = 3
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {6,8,8}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {6,8,8}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {6,8,8}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? ∊ {9,11,12,12,16}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {9,11,12,12,16}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {9,11,12,12,16}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? ∊ {9,11,12,12,16}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? ∊ {9,11,12,12,16}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? ∊ {13,16,16,16}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {13,16,16,16}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {13,16,16,16}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {13,16,16,16}
Description
The value of the power-sum symmetric function evaluated at 1. The statistic is $p_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k$, where $\lambda$ has $k$ parts.
Matching statistic: St000450
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St000450: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 30%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {6,8,8}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {6,8,8}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {6,8,8}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ([(0,8),(0,10),(1,7),(1,10),(2,5),(2,6),(2,10),(3,7),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,11,12,12,16}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,11),(0,12),(1,10),(1,12),(2,9),(2,12),(3,8),(3,12),(4,8),(4,9),(4,10),(4,12),(5,8),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {9,11,12,12,16}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ([(0,15),(0,24),(1,16),(1,24),(2,9),(2,24),(3,15),(3,22),(3,24),(4,16),(4,22),(4,24),(5,17),(5,19),(5,24),(6,12),(6,17),(6,24),(7,9),(7,12),(7,24),(8,13),(8,18),(8,24),(9,24),(10,18),(10,19),(10,22),(10,24),(11,20),(11,21),(11,23),(11,24),(12,14),(12,24),(13,14),(13,23),(13,24),(14,17),(14,24),(15,20),(15,24),(16,21),(16,24),(17,23),(17,24),(18,20),(18,23),(18,24),(19,21),(19,23),(19,24),(20,22),(20,24),(21,22),(21,24),(22,24),(23,24)],25)
=> ? ∊ {9,11,12,12,16}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,11),(0,15),(1,10),(1,15),(2,8),(2,9),(2,15),(3,10),(3,13),(3,15),(4,11),(4,14),(4,15),(5,13),(5,14),(5,15),(6,8),(6,10),(6,13),(6,15),(7,9),(7,11),(7,14),(7,15),(8,12),(8,15),(9,12),(9,15),(10,15),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {13,16,16,16}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ([(0,17),(0,20),(1,16),(1,20),(2,11),(2,20),(3,10),(3,20),(4,10),(4,18),(4,20),(5,11),(5,19),(5,20),(6,16),(6,17),(6,18),(6,20),(7,16),(7,17),(7,19),(7,20),(8,12),(8,13),(8,14),(8,20),(9,12),(9,13),(9,15),(9,20),(10,12),(10,20),(11,13),(11,20),(12,18),(12,20),(13,19),(13,20),(14,16),(14,18),(14,19),(14,20),(15,17),(15,18),(15,19),(15,20),(16,20),(17,20),(18,20),(19,20)],21)
=> ? ∊ {13,16,16,16}
Description
The number of edges minus the number of vertices plus 2 of a graph. When G is connected and planar, this is also the number of its faces. When $G=(V,E)$ is a connected graph, this is its $k$-monochromatic index for $k>2$: for $2\leq k\leq |V|$, the $k$-monochromatic index of $G$ is the maximum number of edge colors allowed such that for each set $S$ of $k$ vertices, there exists a monochromatic tree in $G$ which contains all vertices from $S$. It is shown in [1] that for $k>2$, this is given by this statistic.
Matching statistic: St001391
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001391: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 30%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {6,8,8}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {6,8,8}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {6,8,8}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ([(0,8),(0,10),(1,7),(1,10),(2,5),(2,6),(2,10),(3,7),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,11,12,12,16}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,11),(0,12),(1,10),(1,12),(2,9),(2,12),(3,8),(3,12),(4,8),(4,9),(4,10),(4,12),(5,8),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {9,11,12,12,16}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ([(0,15),(0,24),(1,16),(1,24),(2,9),(2,24),(3,15),(3,22),(3,24),(4,16),(4,22),(4,24),(5,17),(5,19),(5,24),(6,12),(6,17),(6,24),(7,9),(7,12),(7,24),(8,13),(8,18),(8,24),(9,24),(10,18),(10,19),(10,22),(10,24),(11,20),(11,21),(11,23),(11,24),(12,14),(12,24),(13,14),(13,23),(13,24),(14,17),(14,24),(15,20),(15,24),(16,21),(16,24),(17,23),(17,24),(18,20),(18,23),(18,24),(19,21),(19,23),(19,24),(20,22),(20,24),(21,22),(21,24),(22,24),(23,24)],25)
=> ? ∊ {9,11,12,12,16}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,11),(0,15),(1,10),(1,15),(2,8),(2,9),(2,15),(3,10),(3,13),(3,15),(4,11),(4,14),(4,15),(5,13),(5,14),(5,15),(6,8),(6,10),(6,13),(6,15),(7,9),(7,11),(7,14),(7,15),(8,12),(8,15),(9,12),(9,15),(10,15),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {13,16,16,16}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ([(0,17),(0,20),(1,16),(1,20),(2,11),(2,20),(3,10),(3,20),(4,10),(4,18),(4,20),(5,11),(5,19),(5,20),(6,16),(6,17),(6,18),(6,20),(7,16),(7,17),(7,19),(7,20),(8,12),(8,13),(8,14),(8,20),(9,12),(9,13),(9,15),(9,20),(10,12),(10,20),(11,13),(11,20),(12,18),(12,20),(13,19),(13,20),(14,16),(14,18),(14,19),(14,20),(15,17),(15,18),(15,19),(15,20),(16,20),(17,20),(18,20),(19,20)],21)
=> ? ∊ {13,16,16,16}
Description
The disjunction number of a graph. Let $V_n$ be the power set of $\{1,\dots,n\}$ and let $E_n=\{(a,b)| a,b\in V_n, a\neq b, a\cap b=\emptyset\}$. Then the disjunction number of a graph $G$ is the smallest integer $n$ such that $(V_n, E_n)$ has an induced subgraph isomorphic to $G$.
Matching statistic: St001869
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St001869: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 30%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {6,8,8}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {6,8,8}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {6,8,8}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? ∊ {9,11,12,12,16}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {9,11,12,12,16}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? ∊ {9,11,12,12,16}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {13,16,16,16}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? ∊ {13,16,16,16}
Description
The maximum cut size of a graph. A '''cut''' is a set of edges which connect different sides of a vertex partition $V = A \sqcup B$.
Matching statistic: St000095
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St000095: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 30%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {6,8,8} - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {6,8,8} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {6,8,8} - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ([(0,8),(0,10),(1,7),(1,10),(2,5),(2,6),(2,10),(3,7),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,11,12,12,16} - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16} - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16} - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,11),(0,12),(1,10),(1,12),(2,9),(2,12),(3,8),(3,12),(4,8),(4,9),(4,10),(4,12),(5,8),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {9,11,12,12,16} - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ([(0,15),(0,24),(1,16),(1,24),(2,9),(2,24),(3,15),(3,22),(3,24),(4,16),(4,22),(4,24),(5,17),(5,19),(5,24),(6,12),(6,17),(6,24),(7,9),(7,12),(7,24),(8,13),(8,18),(8,24),(9,24),(10,18),(10,19),(10,22),(10,24),(11,20),(11,21),(11,23),(11,24),(12,14),(12,24),(13,14),(13,23),(13,24),(14,17),(14,24),(15,20),(15,24),(16,21),(16,24),(17,23),(17,24),(18,20),(18,23),(18,24),(19,21),(19,23),(19,24),(20,22),(20,24),(21,22),(21,24),(22,24),(23,24)],25)
=> ? ∊ {9,11,12,12,16} - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,11),(0,15),(1,10),(1,15),(2,8),(2,9),(2,15),(3,10),(3,13),(3,15),(4,11),(4,14),(4,15),(5,13),(5,14),(5,15),(6,8),(6,10),(6,13),(6,15),(7,9),(7,11),(7,14),(7,15),(8,12),(8,15),(9,12),(9,15),(10,15),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {13,16,16,16} - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16} - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16} - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ([(0,17),(0,20),(1,16),(1,20),(2,11),(2,20),(3,10),(3,20),(4,10),(4,18),(4,20),(5,11),(5,19),(5,20),(6,16),(6,17),(6,18),(6,20),(7,16),(7,17),(7,19),(7,20),(8,12),(8,13),(8,14),(8,20),(9,12),(9,13),(9,15),(9,20),(10,12),(10,20),(11,13),(11,20),(12,18),(12,20),(13,19),(13,20),(14,16),(14,18),(14,19),(14,20),(15,17),(15,18),(15,19),(15,20),(16,20),(17,20),(18,20),(19,20)],21)
=> ? ∊ {13,16,16,16} - 1
Description
The number of triangles of a graph. A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
Matching statistic: St000309
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St000309: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 30%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {6,8,8} - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {6,8,8} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {6,8,8} - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? ∊ {9,11,12,12,16} - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16} - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {9,11,12,12,16} - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {9,11,12,12,16} - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? ∊ {9,11,12,12,16} - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {13,16,16,16} - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16} - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {13,16,16,16} - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? ∊ {13,16,16,16} - 1
Description
The number of vertices with even degree.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000718The largest Laplacian eigenvalue of a graph if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001725The harmonious chromatic number of a graph. St001742The difference of the maximal and the minimal degree in a graph. St001706The number of closed sets in a graph.