Your data matches 49 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001711
St001711: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 3
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 1
[2,2]
=> 1
[2,1,1]
=> 5
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 5
[3,2]
=> 1
[3,1,1]
=> 1
[2,2,1]
=> 5
[2,1,1,1]
=> 7
[1,1,1,1,1]
=> 1
[6]
=> 3
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 9
[3,3]
=> 1
[3,2,1]
=> 3
[3,1,1,1]
=> 1
[2,2,2]
=> 9
[2,2,1,1]
=> 17
[2,1,1,1,1]
=> 9
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 3
[5,2]
=> 1
[5,1,1]
=> 1
[4,3]
=> 1
[4,2,1]
=> 7
[4,1,1,1]
=> 13
[3,3,1]
=> 19
[3,2,2]
=> 1
[3,2,1,1]
=> 5
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 15
[2,2,1,1,1]
=> 37
[2,1,1,1,1,1]
=> 11
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 1
[6,2]
=> 3
[6,1,1]
=> 3
[5,3]
=> 1
[5,2,1]
=> 3
Description
The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. Let $\alpha$ be any permutation of cycle type $\lambda$. This statistic is the number of permutations $\pi$ such that $$ \alpha\pi\alpha^{-1} = \pi^2.$$
Matching statistic: St001133
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00143: Dyck paths inverse promotionDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St001133: Perfect matchings ⟶ ℤResult quality: 20% values known / values provided: 55%distinct values known / distinct values provided: 20%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 2 = 1 + 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 2 = 1 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 4 = 3 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2 = 1 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 6 = 5 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 2 = 1 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 2 = 1 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)]
=> ? ∊ {5,7} + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> 6 = 5 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 2 = 1 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 2 = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 2 = 1 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> ? ∊ {5,7} + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13)]
=> ? ∊ {9,9,9,17} + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)]
=> ? ∊ {9,9,9,17} + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 4 = 3 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 2 = 1 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 4 = 3 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 2 = 1 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 2 = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 2 = 1 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)]
=> ? ∊ {9,9,9,17} + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? ∊ {9,9,9,17} + 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,16),(14,15)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,14),(12,13)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,12),(10,11)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,12),(10,11)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 4 = 3 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 2 = 1 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 2 = 1 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 2 = 1 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> ? ∊ {1,5,7,11,13,15,19,37} + 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,18),(16,17)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,16),(14,15)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,14),(12,13)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,14),(12,13)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,12),(10,11)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 2 = 1 + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 2 = 1 + 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 2 = 1 + 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> 2 = 1 + 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 2 = 1 + 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 2 = 1 + 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
Description
The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. The bijection between perfect matchings of $\{1,\dots,2n\}$ and trees with $n+1$ leaves is described in Example 5.2.6 of [1].
Matching statistic: St000260
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 7% values known / values provided: 44%distinct values known / distinct values provided: 7%
Values
[1]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? = 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,5}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,5}
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,7}
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {5,5,7}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {5,5,7}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,9,9,9,17}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {3,3,9,9,9,17}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {3,3,9,9,9,17}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {3,3,9,9,9,17}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {3,3,9,9,9,17}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => ([(5,6)],7)
=> ? ∊ {3,3,9,9,9,17}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6] => ([(5,6)],7)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => ([(6,7)],8)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6] => ([(5,6)],7)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,6] => ([(5,6)],7)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7] => ([(6,7)],8)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,8] => ([(7,8)],9)
=> ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65}
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St001533
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St001533: Posets ⟶ ℤResult quality: 13% values known / values provided: 44%distinct values known / distinct values provided: 13%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,5}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {5,5,7}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,7}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {5,5,7}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,3,3,9,9,9,17}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? ∊ {1,3,3,9,9,9,17}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,3,3,9,9,9,17}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,3,3,9,9,9,17}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,3,3,9,9,9,17}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,3,3,9,9,9,17}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,3,3,9,9,9,17}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,15),(4,9),(5,10),(6,3),(6,14),(7,2),(7,14),(8,1),(9,11),(10,12),(11,8),(12,8),(13,11),(13,12),(14,15),(14,16),(15,9),(15,13),(16,10),(16,13)],17)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {1,3,5,7,11,13,15,19,37}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ([(0,7),(0,8),(2,5),(2,17),(3,6),(3,16),(4,14),(5,13),(6,4),(6,20),(7,2),(7,18),(8,3),(8,18),(9,1),(10,12),(11,9),(12,9),(13,10),(14,11),(15,10),(15,19),(16,15),(16,20),(17,13),(17,15),(18,16),(18,17),(19,11),(19,12),(20,14),(20,19)],21)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,6),(5,8),(6,2),(6,11),(7,4),(7,5),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,1)],14)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,6),(2,8),(3,9),(4,10),(5,3),(5,7),(6,5),(6,10),(7,8),(7,9),(8,11),(9,11),(10,2),(10,7),(11,1)],12)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,1),(1,2),(1,3),(2,5),(2,13),(3,7),(3,13),(4,12),(5,11),(6,4),(6,15),(7,6),(7,14),(9,10),(10,8),(11,9),(12,8),(13,11),(13,14),(14,9),(14,15),(15,10),(15,12)],16)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
Description
The largest coefficient of the Poincare polynomial of the poset cone. For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$. Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$. This statistic records its largest coefficient.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000181: Posets ⟶ ℤResult quality: 7% values known / values provided: 33%distinct values known / distinct values provided: 7%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,5}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? ∊ {1,5,5,7}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,5,5,7}
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,5,5,7}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {1,5,5,7}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,13),(2,4),(2,17),(3,5),(3,18),(4,9),(5,12),(6,2),(6,15),(7,3),(7,15),(9,10),(10,11),(11,8),(12,1),(12,16),(13,8),(14,10),(14,16),(15,17),(15,18),(16,11),(16,13),(17,9),(17,14),(18,12),(18,14)],19)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,15),(2,4),(2,22),(3,5),(3,23),(4,6),(4,21),(5,14),(6,10),(7,2),(7,20),(8,3),(8,20),(10,11),(11,12),(12,9),(13,9),(14,1),(14,19),(15,13),(16,11),(16,17),(17,12),(17,13),(18,16),(18,19),(19,15),(19,17),(20,22),(20,23),(21,10),(21,16),(22,18),(22,21),(23,14),(23,18)],24)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,1),(1,3),(1,4),(2,12),(3,7),(3,15),(4,6),(4,15),(5,9),(6,11),(7,5),(7,13),(9,10),(10,8),(11,2),(11,14),(12,8),(13,9),(13,14),(14,10),(14,12),(15,11),(15,13)],16)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,11),(3,10),(4,9),(5,3),(5,7),(6,4),(6,7),(7,9),(7,10),(8,11),(9,8),(10,2),(10,8),(11,1)],12)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,1),(1,2),(1,3),(2,5),(2,13),(3,7),(3,13),(4,12),(5,11),(6,4),(6,15),(7,6),(7,14),(9,10),(10,8),(11,9),(12,8),(13,11),(13,14),(14,9),(14,15),(15,10),(15,12)],16)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
Description
The number of connected components of the Hasse diagram for the poset.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
St001490: Skew partitions ⟶ ℤResult quality: 7% values known / values provided: 33%distinct values known / distinct values provided: 7%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [[1,1],[]]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? ∊ {1,5}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? ∊ {1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[4,4,3],[]]
=> ? ∊ {1,5,5,7}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ? ∊ {1,5,5,7}
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ? ∊ {1,5,5,7}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3],[]]
=> ? ∊ {1,5,5,7}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4],[1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5],[]]
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[5,5,5,4],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[4,4,3,1],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[4,4,4],[3]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,1],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[4,4,4,4,4],[]]
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [[5,5,5,5,5],[1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4,1],[1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[4,4,4,3],[3]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[5,5,4],[1,1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[4,3,3],[1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[3,3,3,2],[1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[4,4,3],[2]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [[5,4],[]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[3,3,3,3,3],[2]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[4,4,3],[1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[4,4,2],[]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[4,4,4,4],[1,1,1]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5,1],[]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [[6,6,6,6],[]]
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
Description
The number of connected components of a skew partition.
Mp00202: Integer partitions first row removalInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001722: Binary words ⟶ ℤResult quality: 7% values known / values provided: 33%distinct values known / distinct values provided: 7%
Values
[1]
=> []
=> []
=> => ? = 1
[2]
=> []
=> []
=> => ? = 1
[1,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[3]
=> []
=> []
=> => ? = 3
[2,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1
[4]
=> []
=> []
=> => ? ∊ {1,5}
[3,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1
[2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1
[1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? ∊ {1,5}
[5]
=> []
=> []
=> => ? ∊ {5,5,7}
[4,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1
[3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1
[2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1
[2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? ∊ {5,5,7}
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? ∊ {5,5,7}
[6]
=> []
=> []
=> => ? ∊ {1,3,3,9,9,9,17}
[5,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[4,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1
[4,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1
[3,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? ∊ {1,3,3,9,9,9,17}
[3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1
[3,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? ∊ {1,3,3,9,9,9,17}
[2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? ∊ {1,3,3,9,9,9,17}
[2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? ∊ {1,3,3,9,9,9,17}
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? ∊ {1,3,3,9,9,9,17}
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? ∊ {1,3,3,9,9,9,17}
[7]
=> []
=> []
=> => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[6,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[5,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1
[5,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1
[4,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1
[4,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,3,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,2,1]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 10111111000000 => ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[8]
=> []
=> []
=> => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[7,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 1
[6,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => 1
[6,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 1
[5,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 1
[5,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,4]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,3,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,2]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,2,2,1]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,2]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,1,1]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 10111111000000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1011111110000000 => ? ∊ {1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
Description
The number of minimal chains with small intervals between a binary word and the top element. A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. Let $P$ be the lattice on binary words of length $n$, where the covering elements of a word are obtained by replacing a valley with a peak. An interval $[w_1, w_2]$ in $P$ is small if $w_2$ is obtained from $w_1$ by replacing some valleys with peaks. This statistic counts the number of chains $w = w_1 < \dots < w_d = 1\dots 1$ to the top element of minimal length. For example, there are two such chains for the word $0110$: $$ 0110 < 1011 < 1101 < 1110 < 1111 $$ and $$ 0110 < 1010 < 1101 < 1110 < 1111. $$
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St001890: Posets ⟶ ℤResult quality: 7% values known / values provided: 33%distinct values known / distinct values provided: 7%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,5}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? ∊ {1,5,5,7}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,5,5,7}
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,5,5,7}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {1,5,5,7}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,1,1,3,3,9,9,9,17}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,13),(2,4),(2,17),(3,5),(3,18),(4,9),(5,12),(6,2),(6,15),(7,3),(7,15),(9,10),(10,11),(11,8),(12,1),(12,16),(13,8),(14,10),(14,16),(15,17),(15,18),(16,11),(16,13),(17,9),(17,14),(18,12),(18,14)],19)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,15),(2,4),(2,22),(3,5),(3,23),(4,6),(4,21),(5,14),(6,10),(7,2),(7,20),(8,3),(8,20),(10,11),(11,12),(12,9),(13,9),(14,1),(14,19),(15,13),(16,11),(16,17),(17,12),(17,13),(18,16),(18,19),(19,15),(19,17),(20,22),(20,23),(21,10),(21,16),(22,18),(22,21),(23,14),(23,18)],24)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,1),(1,3),(1,4),(2,12),(3,7),(3,15),(4,6),(4,15),(5,9),(6,11),(7,5),(7,13),(9,10),(10,8),(11,2),(11,14),(12,8),(13,9),(13,14),(14,10),(14,12),(15,11),(15,13)],16)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,11),(3,10),(4,9),(5,3),(5,7),(6,4),(6,7),(7,9),(7,10),(8,11),(9,8),(10,2),(10,8),(11,1)],12)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,1),(1,2),(1,3),(2,5),(2,13),(3,7),(3,13),(4,12),(5,11),(6,4),(6,15),(7,6),(7,14),(9,10),(10,8),(11,9),(12,8),(13,11),(13,14),(14,9),(14,15),(15,10),(15,12)],16)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? ∊ {1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65}
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Matching statistic: St001330
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 7% values known / values provided: 32%distinct values known / distinct values provided: 7%
Values
[1]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,5} + 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,5} + 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,5,5,7} + 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,5,5,7} + 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,5,5,7} + 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,5,5,7} + 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,9,9,9,17} + 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 1 + 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,1,2,3,4,7,5,6] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [8,1,2,3,7,4,5,6] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [7,1,2,8,3,4,5,6] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [8,1,7,2,3,4,5,6] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,1,2,3,4,5,6,9,7] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [6,1,2,3,4,7,8,5] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 1 + 1
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [9,1,2,3,4,5,8,6,7] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,1,2,3,8,7,4,6] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [9,1,2,3,4,8,5,6,7] => ([(0,8),(1,8),(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,1,2,8,7,3,5,6] => ([(0,4),(1,4),(2,6),(2,7),(3,6),(3,7),(4,5),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [8,1,2,3,9,4,5,6,7] => ([(0,8),(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,7,8,2,4,5,6] => ([(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(5,6),(5,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [9,1,2,8,3,4,5,6,7] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [2,8,7,1,3,4,5,6] => ([(0,5),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [9,1,8,2,3,4,5,6,7] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,9,1,2,3,4,5,6,7] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000058
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
St000058: Permutations ⟶ ℤResult quality: 7% values known / values provided: 30%distinct values known / distinct values provided: 7%
Values
[1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2 = 1 + 1
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => 2 = 1 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => ? ∊ {1,3} + 1
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 2 = 1 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => ? ∊ {1,3} + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => ? ∊ {1,1,1,1,5} + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => ? ∊ {1,1,1,1,5} + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => ? ∊ {1,1,1,1,5} + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => ? ∊ {1,1,1,1,5} + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => ? ∊ {1,1,1,1,5} + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> [10,9,8,7,6,5,4,3,2,1,12,11] => 2 = 1 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => ? ∊ {1,1,5,5,7} + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => ? ∊ {1,1,5,5,7} + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => ? ∊ {1,1,5,5,7} + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => ? ∊ {1,1,5,5,7} + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => ? ∊ {1,1,5,5,7} + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,12,11,10,9,8,7,6,5,4,3] => 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]
=> [12,11,10,9,8,7,6,5,4,3,2,1,14,13] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]
=> [10,9,8,5,4,7,6,3,2,1,12,11] => 2 = 1 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,12,11,10,7,6,9,8,5,4,3] => 2 = 1 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,14,13,12,11,10,9,8,7,6,5,4,3] => ? ∊ {1,1,1,3,3,9,9,9,17} + 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]
=> [14,13,12,11,10,9,8,7,6,5,4,3,2,1,16,15] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]
=> [12,11,10,9,6,5,8,7,4,3,2,1,14,13] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]
=> [10,9,6,5,4,3,8,7,2,1,12,11] => 2 = 1 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> [10,9,4,3,8,7,6,5,2,1,12,11] => 2 = 1 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> [2,1,12,11,8,7,6,5,10,9,4,3] => 2 = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> [2,1,12,11,6,5,10,9,8,7,4,3] => 2 = 1 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,14,13,12,11,8,7,10,9,6,5,4,3] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,16,15,14,13,12,11,10,9,8,7,6,5,4,3] => ? ∊ {1,1,1,3,5,7,11,13,15,19,37} + 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,18)]
=> [16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,18,17] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9),(15,16)]
=> [14,13,12,11,10,7,6,9,8,5,4,3,2,1,16,15] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,7),(5,6),(8,9),(13,14)]
=> [12,11,10,7,6,5,4,9,8,3,2,1,14,13] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,5),(6,9),(7,8),(13,14)]
=> [12,11,10,5,4,9,8,7,6,3,2,1,14,13] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9),(11,12)]
=> [10,7,6,5,4,3,2,9,8,1,12,11] => 2 = 1 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)]
=> [10,9,4,3,6,5,8,7,2,1,12,11] => 2 = 1 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7),(11,12)]
=> [10,3,2,9,8,7,6,5,4,1,12,11] => 2 = 1 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)]
=> [8,7,6,5,4,3,2,1,12,11,10,9] => 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]
=> [2,1,12,9,8,7,6,5,4,11,10,3] => 2 = 1 + 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)]
=> [2,1,12,11,6,5,8,7,10,9,4,3] => 2 = 1 + 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,14,13,12,9,8,7,6,11,10,5,4,3] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)]
=> [4,3,2,1,12,11,10,9,8,7,6,5] => 2 = 1 + 1
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => 2 = 1 + 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,14,13,12,7,6,11,10,9,8,5,4,3] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)]
=> [2,1,16,15,14,13,12,9,8,11,10,7,6,5,4,3] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)]
=> [2,1,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3] => ? ∊ {1,3,3,3,5,5,7,13,17,29,33,37,45,65} + 1
Description
The order of a permutation. $\operatorname{ord}(\pi)$ is given by the minimial $k$ for which $\pi^k$ is the identity permutation.
The following 39 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000782The indicator function of whether a given perfect matching is an L & P matching. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000455The second largest eigenvalue of a graph if it is integral. St001058The breadth of the ordered tree. St000068The number of minimal elements in a poset. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001778The largest greatest common divisor of an element and its image in a permutation. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000401The size of the symmetry class of a permutation. St000406The number of occurrences of the pattern 3241 in a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000872The number of very big descents of a permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001524The degree of symmetry of a binary word. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001488The number of corners of a skew partition. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000022The number of fixed points of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000451The length of the longest pattern of the form k 1 2. St000534The number of 2-rises of a permutation. St000546The number of global descents of a permutation. St000731The number of double exceedences of a permutation. St000842The breadth of a permutation. St000862The number of parts of the shifted shape of a permutation.