Processing math: 100%

Your data matches 83 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000765: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,1] => 2
[2] => 1
[1,1,1] => 3
[1,2] => 2
[2,1] => 1
[3] => 1
[1,1,1,1] => 4
[1,1,2] => 3
[1,2,1] => 2
[1,3] => 2
[2,1,1] => 1
[2,2] => 2
[3,1] => 1
[4] => 1
[1,1,1,1,1] => 5
[1,1,1,2] => 4
[1,1,2,1] => 3
[1,1,3] => 3
[1,2,1,1] => 2
[1,2,2] => 3
[1,3,1] => 2
[1,4] => 2
[2,1,1,1] => 1
[2,1,2] => 2
[2,2,1] => 2
[2,3] => 2
[3,1,1] => 1
[3,2] => 1
[4,1] => 1
[5] => 1
[1,1,1,1,1,1] => 6
[1,1,1,1,2] => 5
[1,1,1,2,1] => 4
[1,1,1,3] => 4
[1,1,2,1,1] => 3
[1,1,2,2] => 4
[1,1,3,1] => 3
[1,1,4] => 3
[1,2,1,1,1] => 2
[1,2,1,2] => 3
[1,2,2,1] => 3
[1,2,3] => 3
[1,3,1,1] => 2
[1,3,2] => 2
[1,4,1] => 2
[1,5] => 2
[2,1,1,1,1] => 1
[2,1,1,2] => 2
[2,1,2,1] => 2
Description
The number of weak records in an integer composition. A weak record is an element ai such that aiaj for all j<i.
Mp00231: Integer compositions bounce pathDyck paths
St001733: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 1
[1,1] => [1,0,1,0]
=> 2
[2] => [1,1,0,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> 3
[1,2] => [1,0,1,1,0,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> 1
[3] => [1,1,1,0,0,0]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
Description
The number of weak left to right maxima of a Dyck path. A weak left to right maximum is a peak whose height is larger than or equal to the height of all peaks to its left.
Matching statistic: St000442
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 86% values known / values provided: 87%distinct values known / distinct values provided: 86%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> 3
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7}
Description
The maximal area to the right of an up step of a Dyck path.
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 86% values known / values provided: 87%distinct values known / distinct values provided: 86%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,2,3,3,3,3,3,3,4,4,4,5,7} + 1
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St000013
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 87% values known / values provided: 87%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4} + 1
Description
The height of a Dyck path. The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
Mp00231: Integer compositions bounce pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001652: Permutations ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 2
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,3,2] => 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1,3] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => 2
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,5,6,7,1,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,5,6,7,1,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,5,7,1,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,6,7,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,5,7,1,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,6,1,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,4,5,7,1,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,4,5,6,1,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,5,6,1,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,3,4,6,1,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,7,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [2,3,4,1,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,3,4,5,1,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,4,5,1,6,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,6,3,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,1,5,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,4,5,6,1,7,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,1,7,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,1,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,6,1,7,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,1,5,3,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
Description
The length of a longest interval of consecutive numbers. For a permutation π=π1,,πn, this statistic returns the length of a longest subsequence πk,,π such that πi+1=πi+1 for i{k,,1}.
Mp00231: Integer compositions bounce pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001662: Permutations ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 2
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,3,2] => 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1,3] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => 2
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,5,6,7,1,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,5,6,7,1,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,5,7,1,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,6,7,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,5,7,1,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,6,1,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,4,5,7,1,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,4,5,6,1,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,5,6,1,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,3,4,6,1,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,7,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [2,3,4,1,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,3,4,5,1,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,4,5,1,6,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,6,3,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,1,5,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,4,5,6,1,7,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,1,7,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,1,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,6,1,7,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,1,5,3,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,6}
Description
The length of the longest factor of consecutive numbers in a permutation.
Matching statistic: St000654
Mp00231: Integer compositions bounce pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St000654: Permutations ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => ? = 1
[1,1] => [1,0,1,0]
=> [1,0,1,0]
=> [2,1] => 1
[2] => [1,1,0,0]
=> [1,1,0,0]
=> [1,2] => 2
[1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1,3] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,3,2] => 2
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => 3
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 5
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4,6] => 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,6] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,4,3,6,5] => 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,6] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [3,4,1,5,2,6] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,3,5,4,6] => 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,5,1,6,2,4] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [3,1,4,5,2,6] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,2,6,3] => 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,6,1,2,3,5] => 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,5,3,4,6] => 3
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4,6] => 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,6,2,4] => 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5] => 3
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [3,4,1,5,2,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,7,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [3,5,1,6,2,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,6,1,2,3,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [3,5,1,7,2,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [3,1,5,6,2,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,2,5,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,7,2,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [4,6,1,7,2,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [4,6,1,2,3,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [4,5,6,1,7,2,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,5,7,2,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,7,2,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [3,4,1,2,5,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,7,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,5,1,2,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,7,2,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [4,5,1,6,2,7,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [4,5,1,7,2,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [4,6,7,1,2,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [4,5,1,2,6,7,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [4,5,1,6,7,2,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,5,6,2,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [5,6,7,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
Description
The first descent of a permutation. For a permutation π of {1,,n}, this is the smallest index 0<in such that π(i)>π(i+1) where one considers π(n+1)=0.
Matching statistic: St000989
Mp00231: Integer compositions bounce pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000989: Permutations ⟶ ℤResult quality: 68% values known / values provided: 68%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => ? = 1 - 1
[1,1] => [1,0,1,0]
=> [1,0,1,0]
=> [2,1] => 0 = 1 - 1
[2] => [1,1,0,0]
=> [1,1,0,0]
=> [1,2] => 1 = 2 - 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => 0 = 1 - 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 1 = 2 - 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => 0 = 1 - 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 2 = 3 - 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 1 = 2 - 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 0 = 1 - 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 2 = 3 - 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0 = 1 - 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 2 - 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 1 = 2 - 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 1 = 2 - 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 0 = 1 - 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => 2 = 3 - 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 0 = 1 - 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 1 = 2 - 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => 1 = 2 - 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => 3 = 4 - 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 1 = 2 - 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 0 = 1 - 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => 2 = 3 - 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => 1 = 2 - 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1 = 2 - 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => 2 = 3 - 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => 0 = 1 - 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => 1 = 2 - 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => 0 = 1 - 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,1,2,3] => 2 = 3 - 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => 0 = 1 - 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,5,6,2,4] => 1 = 2 - 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => 1 = 2 - 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [5,6,1,2,3,4] => 3 = 4 - 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => 0 = 1 - 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => 1 = 2 - 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => 0 = 1 - 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,3,5] => 2 = 3 - 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => 1 = 2 - 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,1,2,5,3,6] => 1 = 2 - 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [5,1,6,2,3,4] => 2 = 3 - 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [6,1,2,3,4,5] => 4 = 5 - 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 0 = 1 - 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,1,5,2,6] => 1 = 2 - 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5] => 0 = 1 - 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,1,5,2,3,6] => 2 = 3 - 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,1,2] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,6,1,7,2] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,7,1,2,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,5,1,6,7,2] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [4,5,6,1,7,2,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [5,6,7,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,4,1,5,6,7,2] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [3,1,4,6,7,2,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,6,7,2,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [4,5,1,6,7,2,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [5,6,1,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [6,7,1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,5,6,7,2] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,7,2,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [3,1,4,6,2,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [4,1,5,7,2,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,5,7,2,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [4,1,5,6,7,2,3] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [4,1,2,5,7,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [4,1,5,2,6,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [5,1,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [5,1,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [6,1,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,5,1,6,2,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [3,4,1,5,2,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [4,5,1,6,2,3,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,4,2,6,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [4,1,5,2,7,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [5,1,6,2,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,5,2,7,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [4,1,2,5,3,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,6} - 1
Description
The number of final rises of a permutation. For a permutation π of length n, this is the maximal k such that π(nk)π(nk+1)π(n1)π(n). Equivalently, this is n1 minus the position of the last descent [[St000653]].
Matching statistic: St000675
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000675: Dyck paths ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 71%
Values
[1] => [[1],[]]
=> []
=> []
=> ? = 1
[1,1] => [[1,1],[]]
=> []
=> []
=> ? ∊ {1,2}
[2] => [[2],[]]
=> []
=> []
=> ? ∊ {1,2}
[1,1,1] => [[1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,3}
[1,2] => [[2,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,3}
[2,1] => [[2,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,2,3}
[3] => [[3],[]]
=> []
=> []
=> ? ∊ {1,1,2,3}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,4}
[1,1,2] => [[2,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,4}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,2,2,3,4}
[1,3] => [[3,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,4}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,2] => [[3,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,2,2,3,4}
[3,1] => [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[4] => [[4],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,4}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,3,4,5}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,3,4,5}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,2,2,3,3,4,5}
[1,1,3] => [[3,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,3,4,5}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,2,2,3,3,4,5}
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,4] => [[4,1],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,3,4,5}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3] => [[4,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,2,2,3,3,4,5}
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[3,2] => [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[4,1] => [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 2
[5] => [[5],[]]
=> []
=> []
=> ? ∊ {1,1,2,2,3,3,4,5}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,1,4] => [[4,1,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 2
[1,5] => [[5,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,4] => [[5,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 4
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,3] => [[5,3],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3
[4,2] => [[5,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 2
[5,1] => [[5,5],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 2
[6] => [[6],[]]
=> []
=> []
=> ? ∊ {1,2,2,3,3,3,4,4,5,6}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,1,1,4] => [[4,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,1,4,1] => [[4,4,1,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 2
[1,1,5] => [[5,1,1],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,2,4] => [[5,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,6] => [[6,1],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[2,5] => [[6,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
[7] => [[7],[]]
=> []
=> []
=> ? ∊ {2,3,3,3,3,4,4,4,5,5,6,7}
Description
The number of centered multitunnels of a Dyck path. This is the number of factorisations D=ABC of a Dyck path, such that B is a Dyck path and A and B have the same length.
The following 73 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000007The number of saliances of the permutation. St001330The hat guessing number of a graph. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000542The number of left-to-right-minima of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000993The multiplicity of the largest part of an integer partition. St001062The maximal size of a block of a set partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn1] such that n=c0<ci for all i>0 a special CNakayama algebra. St001481The minimal height of a peak of a Dyck path. St000469The distinguishing number of a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000314The number of left-to-right-maxima of a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000686The finitistic dominant dimension of a Dyck path. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn1] by adding c0 to cn1. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001274The number of indecomposable injective modules with projective dimension equal to two. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001118The acyclic chromatic index of a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St001060The distinguishing index of a graph. St000260The radius of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000668The least common multiple of the parts of the partition. St000770The major index of an integer partition when read from bottom to top. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000308The height of the tree associated to a permutation. St000460The hook length of the last cell along the main diagonal of an integer partition. St001201The grade of the simple module S0 in the special CNakayama algebra corresponding to the Dyck path. St000454The largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001192The maximal dimension of Ext2A(S,A) for a simple module S over the corresponding Nakayama algebra A. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001568The smallest positive integer that does not appear twice in the partition. St000392The length of the longest run of ones in a binary word. St000485The length of the longest cycle of a permutation. St000873The aix statistic of a permutation. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001530The depth of a Dyck path. St001948The number of augmented double ascents of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001615The number of join prime elements of a lattice. St000706The product of the factorials of the multiplicities of an integer partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001267The length of the Lyndon factorization of the binary word. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001557The number of inversions of the second entry of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before.