Your data matches 43 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001770
St001770: Signed permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[-1] => 1
[1,2] => 1
[1,-2] => 2
[-1,2] => 1
[-1,-2] => 1
[2,1] => 2
[2,-1] => 1
[-2,1] => 3
[-2,-1] => 1
[1,2,3] => 1
[1,2,-3] => 3
[1,-2,3] => 4
[1,-2,-3] => 6
[-1,2,3] => 1
[-1,2,-3] => 2
[-1,-2,3] => 1
[-1,-2,-3] => 1
[1,3,2] => 3
[1,3,-2] => 3
[1,-3,2] => 6
[1,-3,-2] => 4
[-1,3,2] => 2
[-1,3,-2] => 1
[-1,-3,2] => 3
[-1,-3,-2] => 1
[2,1,3] => 3
[2,1,-3] => 9
[2,-1,3] => 1
[2,-1,-3] => 2
[-2,1,3] => 5
[-2,1,-3] => 8
[-2,-1,3] => 1
[-2,-1,-3] => 1
[2,3,1] => 3
[2,3,-1] => 1
[2,-3,1] => 8
[2,-3,-1] => 2
[-2,3,1] => 8
[-2,3,-1] => 2
[-2,-3,1] => 10
[-2,-3,-1] => 2
[3,1,2] => 6
[3,1,-2] => 8
[3,-1,2] => 2
[3,-1,-2] => 1
[-3,1,2] => 10
[-3,1,-2] => 10
[-3,-1,2] => 3
[-3,-1,-2] => 1
Description
The number of facets of a certain subword complex associated with the signed permutation. Let $Q=[1,\dots,n,1,\dots,n,\dots,1,\dots,n]$ be the word of length $n^2$, and let $\pi$ be a signed permutation. Then this statistic yields the number of facets of the subword complex $\Delta(Q, \pi)$.
Matching statistic: St001603
Mp00260: Signed permutations Demazure product with inverseSigned permutations
Mp00190: Signed permutations Foata-HanSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 14%distinct values known / distinct values provided: 4%
Values
[1] => [1] => [1] => [1]
=> ? ∊ {1,1}
[-1] => [-1] => [-1] => []
=> ? ∊ {1,1}
[1,2] => [1,2] => [1,2] => [1,1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1,-2] => [1,-2] => [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [-1,-2] => [-1,-2] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => [-1,-2] => [-1,-2] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2,1] => [-2,1] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => [-1,2] => [-1,2] => [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => [-2,-1] => [2,-1] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [-1,-2] => [-1,-2] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,2,3] => [1,2,3] => [1,1,1]
=> 1
[1,2,-3] => [1,2,-3] => [1,2,-3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,-2,-3] => [1,-2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1,-2,-3] => [1,-2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [1,3,2] => [1,-3,2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1,-2,3] => [1,-2,3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1,-3,-2] => [1,3,-2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [1,-2,-3] => [1,-2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1,3] => [-2,1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2,1,-3] => [-2,1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [-1,2,-3] => [-1,2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => [-1,2,-3] => [-1,2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [-2,-1,3] => [2,-1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => [-2,-1,-3] => [2,-1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3,2,1] => [-2,-3,1] => [3]
=> 1
[2,3,-1] => [-1,2,3] => [-1,2,3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => [-3,2,-1] => [2,-3,-1] => [3]
=> 1
[2,-3,-1] => [-1,2,-3] => [-1,2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => [-2,-1,3] => [2,-1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [-2,-1,-3] => [2,-1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3,2,1] => [-2,-3,1] => [3]
=> 1
[3,1,-2] => [3,-2,1] => [-2,3,1] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => [-3,2,-1] => [2,-3,-1] => [3]
=> 1
[-3,1,-2] => [-3,-2,-1] => [2,3,-1] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [3,2,1] => [-2,-3,1] => [3]
=> 1
[3,2,-1] => [-1,3,2] => [-1,-3,2] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-2,1] => [-2,-1,3] => [2,-1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-2,-1] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,2,1] => [-3,2,-1] => [2,-3,-1] => [3]
=> 1
[-3,2,-1] => [-1,-3,-2] => [-1,3,-2] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-2,1] => [-2,-1,-3] => [2,-1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> 3
[1,2,3,-4] => [1,2,3,-4] => [1,2,3,-4] => [1,1,1]
=> 1
[1,2,4,-3] => [1,2,-3,4] => [1,2,-3,4] => [1,1,1]
=> 1
[1,3,4,2] => [1,4,3,2] => [1,-3,-4,2] => [3,1]
=> 1
[1,3,4,-2] => [1,-2,3,4] => [1,-2,3,4] => [1,1,1]
=> 1
[1,3,-4,2] => [1,-4,3,-2] => [1,3,-4,-2] => [3,1]
=> 1
[1,4,2,3] => [1,4,3,2] => [1,-3,-4,2] => [3,1]
=> 1
[1,-4,2,3] => [1,-4,3,-2] => [1,3,-4,-2] => [3,1]
=> 1
[1,4,3,2] => [1,4,3,2] => [1,-3,-4,2] => [3,1]
=> 1
[1,-4,3,2] => [1,-4,3,-2] => [1,3,-4,-2] => [3,1]
=> 1
[2,3,1,4] => [3,2,1,4] => [-2,-3,1,4] => [3,1]
=> 1
[2,3,1,-4] => [3,2,1,-4] => [-2,-3,1,-4] => [3]
=> 1
[2,-3,1,4] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[2,-3,1,-4] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[2,3,4,-1] => [-1,2,3,4] => [-1,2,3,4] => [1,1,1]
=> 1
[2,-3,4,1] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[2,-3,-4,1] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[2,-4,1,-3] => [-4,2,-3,-1] => [-3,4,2,-1] => [4]
=> 1
[2,4,-3,1] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[2,-4,-3,1] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[3,1,2,4] => [3,2,1,4] => [-2,-3,1,4] => [3,1]
=> 1
[3,1,2,-4] => [3,2,1,-4] => [-2,-3,1,-4] => [3]
=> 1
[-3,1,2,4] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[-3,1,2,-4] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[3,1,4,2] => [3,4,1,2] => [3,4,1,2] => [2,2]
=> 2
[3,1,-4,2] => [3,-4,1,-2] => [3,-4,1,-2] => [2,2]
=> 2
[-3,1,4,2] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,1,-4,2] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,2,1,4] => [3,2,1,4] => [-2,-3,1,4] => [3,1]
=> 1
[3,2,1,-4] => [3,2,1,-4] => [-2,-3,1,-4] => [3]
=> 1
[-3,2,1,4] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[-3,2,1,-4] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[-3,2,4,1] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,2,-4,1] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,1,-2] => [4,-2,3,1] => [3,-4,-2,1] => [4]
=> 1
[-3,4,1,2] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,-4,1,2] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,-1] => [-1,4,3,2] => [-1,-3,-4,2] => [3]
=> 1
[3,-4,2,-1] => [-1,-4,3,-2] => [-1,3,-4,-2] => [3]
=> 1
[-3,4,2,1] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,-4,2,1] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[-4,1,2,-3] => [-4,2,-3,-1] => [-3,4,2,-1] => [4]
=> 1
[4,1,3,-2] => [4,-2,3,1] => [3,-4,-2,1] => [4]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001605
Mp00260: Signed permutations Demazure product with inverseSigned permutations
Mp00190: Signed permutations Foata-HanSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 14%distinct values known / distinct values provided: 4%
Values
[1] => [1] => [1] => [1]
=> ? ∊ {1,1}
[-1] => [-1] => [-1] => []
=> ? ∊ {1,1}
[1,2] => [1,2] => [1,2] => [1,1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1,-2] => [1,-2] => [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [-1,-2] => [-1,-2] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => [-1,-2] => [-1,-2] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2,1] => [-2,1] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => [-1,2] => [-1,2] => [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => [-2,-1] => [2,-1] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [-1,-2] => [-1,-2] => []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,2,3] => [1,2,3] => [1,1,1]
=> 2
[1,2,-3] => [1,2,-3] => [1,2,-3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,-2,-3] => [1,-2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1,-2,-3] => [1,-2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [1,3,2] => [1,-3,2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1,-2,3] => [1,-2,3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1,-3,-2] => [1,3,-2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [1,-2,-3] => [1,-2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1,3] => [-2,1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2,1,-3] => [-2,1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [-1,2,-3] => [-1,2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => [-1,2,-3] => [-1,2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [-2,-1,3] => [2,-1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => [-2,-1,-3] => [2,-1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3,2,1] => [-2,-3,1] => [3]
=> 1
[2,3,-1] => [-1,2,3] => [-1,2,3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => [-3,2,-1] => [2,-3,-1] => [3]
=> 1
[2,-3,-1] => [-1,2,-3] => [-1,2,-3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => [-2,-1,3] => [2,-1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [-2,-1,-3] => [2,-1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3,2,1] => [-2,-3,1] => [3]
=> 1
[3,1,-2] => [3,-2,1] => [-2,3,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => [-3,2,-1] => [2,-3,-1] => [3]
=> 1
[-3,1,-2] => [-3,-2,-1] => [2,3,-1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => [-1,-2,-3] => [-1,-2,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [3,2,1] => [-2,-3,1] => [3]
=> 1
[3,2,-1] => [-1,3,2] => [-1,-3,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-2,1] => [-2,-1,3] => [2,-1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-2,-1] => [-1,-2,3] => [-1,-2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,2,1] => [-3,2,-1] => [2,-3,-1] => [3]
=> 1
[-3,2,-1] => [-1,-3,-2] => [-1,3,-2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-2,1] => [-2,-1,-3] => [2,-1,-3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> 6
[1,2,3,-4] => [1,2,3,-4] => [1,2,3,-4] => [1,1,1]
=> 2
[1,2,4,-3] => [1,2,-3,4] => [1,2,-3,4] => [1,1,1]
=> 2
[1,3,4,2] => [1,4,3,2] => [1,-3,-4,2] => [3,1]
=> 1
[1,3,4,-2] => [1,-2,3,4] => [1,-2,3,4] => [1,1,1]
=> 2
[1,3,-4,2] => [1,-4,3,-2] => [1,3,-4,-2] => [3,1]
=> 1
[1,4,2,3] => [1,4,3,2] => [1,-3,-4,2] => [3,1]
=> 1
[1,-4,2,3] => [1,-4,3,-2] => [1,3,-4,-2] => [3,1]
=> 1
[1,4,3,2] => [1,4,3,2] => [1,-3,-4,2] => [3,1]
=> 1
[1,-4,3,2] => [1,-4,3,-2] => [1,3,-4,-2] => [3,1]
=> 1
[2,3,1,4] => [3,2,1,4] => [-2,-3,1,4] => [3,1]
=> 1
[2,3,1,-4] => [3,2,1,-4] => [-2,-3,1,-4] => [3]
=> 1
[2,-3,1,4] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[2,-3,1,-4] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[2,3,4,-1] => [-1,2,3,4] => [-1,2,3,4] => [1,1,1]
=> 2
[2,-3,4,1] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[2,-3,-4,1] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[2,-4,1,-3] => [-4,2,-3,-1] => [-3,4,2,-1] => [4]
=> 1
[2,4,-3,1] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[2,-4,-3,1] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[3,1,2,4] => [3,2,1,4] => [-2,-3,1,4] => [3,1]
=> 1
[3,1,2,-4] => [3,2,1,-4] => [-2,-3,1,-4] => [3]
=> 1
[-3,1,2,4] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[-3,1,2,-4] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[3,1,4,2] => [3,4,1,2] => [3,4,1,2] => [2,2]
=> 2
[3,1,-4,2] => [3,-4,1,-2] => [3,-4,1,-2] => [2,2]
=> 2
[-3,1,4,2] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,1,-4,2] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,2,1,4] => [3,2,1,4] => [-2,-3,1,4] => [3,1]
=> 1
[3,2,1,-4] => [3,2,1,-4] => [-2,-3,1,-4] => [3]
=> 1
[-3,2,1,4] => [-3,2,-1,4] => [2,-3,-1,4] => [3,1]
=> 1
[-3,2,1,-4] => [-3,2,-1,-4] => [2,-3,-1,-4] => [3]
=> 1
[-3,2,4,1] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,2,-4,1] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,1,-2] => [4,-2,3,1] => [3,-4,-2,1] => [4]
=> 1
[-3,4,1,2] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,-4,1,2] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[3,4,2,-1] => [-1,4,3,2] => [-1,-3,-4,2] => [3]
=> 1
[3,-4,2,-1] => [-1,-4,3,-2] => [-1,3,-4,-2] => [3]
=> 1
[-3,4,2,1] => [-3,4,-1,2] => [-3,4,-1,2] => [2,2]
=> 2
[-3,-4,2,1] => [-3,-4,-1,-2] => [-3,-4,-1,-2] => [2,2]
=> 2
[-4,1,2,-3] => [-4,2,-3,-1] => [-3,4,2,-1] => [4]
=> 1
[4,1,3,-2] => [4,-2,3,1] => [3,-4,-2,1] => [4]
=> 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00163: Signed permutations permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000264: Graphs ⟶ ℤResult quality: 1% values known / values provided: 7%distinct values known / distinct values provided: 1%
Values
[1] => [1] => [1] => ([],1)
=> ? ∊ {1,1}
[-1] => [1] => [1] => ([],1)
=> ? ∊ {1,1}
[1,2] => [1,2] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1,2] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1,2] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => [1,2] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => [2,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => [2,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2,1] => [2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,-3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => [2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,4,3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,-3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,-3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,-3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,-3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,-3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,-3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,-3,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,-3,-2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,-2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,-2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,-3,2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,-3,2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,-3,-2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,-3,-2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,3,2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,3,2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,3,-2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,3,-2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,-3,2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,-3,2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,-3,-2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-4,-3,-2,-1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Matching statistic: St001629
Mp00163: Signed permutations permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
St001629: Integer compositions ⟶ ℤResult quality: 1% values known / values provided: 7%distinct values known / distinct values provided: 1%
Values
[1] => [1] => [1] => [1] => ? ∊ {1,1}
[-1] => [1] => [1] => [1] => ? ∊ {1,1}
[1,2] => [1,2] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1,2] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1,2] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => [1,2] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2,1] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => [2,1] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => [2,1] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2,1] => [2] => [1] => ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,-3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => [1,2,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [1,3,2] => [1,2] => [1,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2,1,3] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => [2,3,1] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => [3,1,2] => [3] => [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[1,-4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,-3,2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[-1,-4,-3,-2] => [1,4,3,2] => [1,2,1] => [1,1,1] => 1
[4,3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[4,-3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,-2,1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
[-4,-3,-2,-1] => [4,3,2,1] => [1,2,1] => [1,1,1] => 1
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000284: Integer partitions ⟶ ℤResult quality: 1% values known / values provided: 7%distinct values known / distinct values provided: 1%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
Description
The Plancherel distribution on integer partitions. This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions. Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000510: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
Description
The number of invariant oriented cycles when acting with a permutation of given cycle type.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The least common multiple of the parts of the partition.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000681: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
Description
The Grundy value of Chomp on Ferrers diagrams. Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1]. This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000698: Integer partitions ⟶ ℤResult quality: 1% values known / values provided: 7%distinct values known / distinct values provided: 1%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,3}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2,2,3}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,5,5,6,6,6,6,7,8,8,8,8,8,9,10,10,10,15}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$. This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
The following 33 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000418The number of Dyck paths that are weakly below a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000438The position of the last up step in a Dyck path. St000444The length of the maximal rise of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000981The length of the longest zigzag subpath. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001808The box weight or horizontal decoration of a Dyck path. St001959The product of the heights of the peaks of a Dyck path.