Your data matches 726 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001771
St001771: Signed permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[-1] => 0
[1,2] => 0
[1,-2] => 1
[-1,2] => 0
[-1,-2] => 0
[2,1] => 0
[2,-1] => 0
[-2,1] => 0
[-2,-1] => 0
[1,2,3] => 0
[1,2,-3] => 2
[1,-2,3] => 1
[1,-2,-3] => 2
[-1,2,3] => 0
[-1,2,-3] => 1
[-1,-2,3] => 0
[-1,-2,-3] => 0
[1,3,2] => 0
[1,3,-2] => 1
[1,-3,2] => 1
[1,-3,-2] => 2
[-1,3,2] => 0
[-1,3,-2] => 0
[-1,-3,2] => 0
[-1,-3,-2] => 0
[2,1,3] => 0
[2,1,-3] => 2
[2,-1,3] => 0
[2,-1,-3] => 1
[-2,1,3] => 0
[-2,1,-3] => 1
[-2,-1,3] => 0
[-2,-1,-3] => 0
[2,3,1] => 0
[2,3,-1] => 0
[2,-3,1] => 1
[2,-3,-1] => 1
[-2,3,1] => 0
[-2,3,-1] => 0
[-2,-3,1] => 0
[-2,-3,-1] => 0
[3,1,2] => 0
[3,1,-2] => 1
[3,-1,2] => 0
[3,-1,-2] => 0
[-3,1,2] => 0
[-3,1,-2] => 1
[-3,-1,2] => 0
[-3,-1,-2] => 0
Description
The number of occurrences of the signed pattern 1-2 in a signed permutation. This is the number of pairs $1\leq i < j\leq n$ such that $0 < \pi(i) < -\pi(j)$.
Mp00260: Signed permutations Demazure product with inverseSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000369: Dyck paths ⟶ ℤResult quality: 77% values known / values provided: 77%distinct values known / distinct values provided: 80%
Values
[1] => [1] => [1]
=> [1,0,1,0]
=> 0
[-1] => [-1] => []
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2] => [1,-2] => [1]
=> [1,0,1,0]
=> 0
[-1,2] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[-1,-2] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[2,1] => [2,1] => [2]
=> [1,1,0,0,1,0]
=> 0
[2,-1] => [-1,2] => [1]
=> [1,0,1,0]
=> 0
[-2,1] => [-2,-1] => [2]
=> [1,1,0,0,1,0]
=> 0
[-2,-1] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[1,2,3] => [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,-3] => [1,2,-3] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2,3] => [1,-2,-3] => [1]
=> [1,0,1,0]
=> 0
[1,-2,-3] => [1,-2,-3] => [1]
=> [1,0,1,0]
=> 0
[-1,2,3] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-1,2,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-2,3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-2,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,3,-2] => [1,-2,3] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-3,2] => [1,-3,-2] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,-3,-2] => [1,-2,-3] => [1]
=> [1,0,1,0]
=> 0
[-1,3,2] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-1,3,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-3,2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-3,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,1,-3] => [2,1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[2,-1,3] => [-1,2,-3] => [1]
=> [1,0,1,0]
=> 0
[2,-1,-3] => [-1,2,-3] => [1]
=> [1,0,1,0]
=> 0
[-2,1,3] => [-2,-1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-2,1,-3] => [-2,-1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[-2,-1,3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-2,-1,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[2,3,1] => [3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,3,-1] => [-1,2,3] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[2,-3,1] => [-3,2,-1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,-3,-1] => [-1,2,-3] => [1]
=> [1,0,1,0]
=> 0
[-2,3,1] => [-2,-1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-2,3,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-2,-3,1] => [-2,-1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[-2,-3,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[3,1,2] => [3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,1,-2] => [3,-2,1] => [2]
=> [1,1,0,0,1,0]
=> 0
[3,-1,2] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[3,-1,-2] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-3,1,2] => [-3,2,-1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-3,1,-2] => [-3,-2,-1] => [2]
=> [1,1,0,0,1,0]
=> 0
[-3,-1,2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-3,-1,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[3,2,1] => [3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,2,-1] => [-1,3,2] => [2]
=> [1,1,0,0,1,0]
=> 0
[3,-2,1] => [-2,-1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,-2,-1] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-3,2,1] => [-3,2,-1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-3,2,-1] => [-1,-3,-2] => [2]
=> [1,1,0,0,1,0]
=> 0
[-3,-2,1] => [-2,-1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[-3,-2,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,2,3,-4] => [1,2,3,-4] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,-3,4] => [1,2,-3,-4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,2,-3,-4] => [1,2,-3,-4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2,3,4] => [1,-2,-3,4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2,3,-4] => [1,-2,-3,-4] => [1]
=> [1,0,1,0]
=> 0
[1,-2,-3,4] => [1,-2,-3,-4] => [1]
=> [1,0,1,0]
=> 0
[1,-2,-3,-4] => [1,-2,-3,-4] => [1]
=> [1,0,1,0]
=> 0
[-1,2,3,4] => [-1,-2,3,4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[-1,2,-3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,2,-3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,2,-4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,4,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-4,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,4,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-4,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-2,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-2,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-3,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-3,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The dinv deficit of a Dyck path. For a Dyck path $D$ of semilength $n$, this is defined as $$\binom{n}{2} - \operatorname{area}(D) - \operatorname{dinv}(D).$$ In other words, this is the number of boxes in the partition traced out by $D$ for which the leg-length minus the arm-length is not in $\{0,1\}$. See also [[St000376]] for the bounce deficit.
Mp00260: Signed permutations Demazure product with inverseSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000376: Dyck paths ⟶ ℤResult quality: 77% values known / values provided: 77%distinct values known / distinct values provided: 80%
Values
[1] => [1] => [1]
=> [1,0,1,0]
=> 0
[-1] => [-1] => []
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2] => [1,-2] => [1]
=> [1,0,1,0]
=> 0
[-1,2] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[-1,-2] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[2,1] => [2,1] => [2]
=> [1,1,0,0,1,0]
=> 0
[2,-1] => [-1,2] => [1]
=> [1,0,1,0]
=> 0
[-2,1] => [-2,-1] => [2]
=> [1,1,0,0,1,0]
=> 0
[-2,-1] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[1,2,3] => [1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,-3] => [1,2,-3] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2,3] => [1,-2,-3] => [1]
=> [1,0,1,0]
=> 0
[1,-2,-3] => [1,-2,-3] => [1]
=> [1,0,1,0]
=> 0
[-1,2,3] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-1,2,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-2,3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-2,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,3,-2] => [1,-2,3] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-3,2] => [1,-3,-2] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,-3,-2] => [1,-2,-3] => [1]
=> [1,0,1,0]
=> 0
[-1,3,2] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-1,3,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-3,2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-3,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,1,-3] => [2,1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[2,-1,3] => [-1,2,-3] => [1]
=> [1,0,1,0]
=> 0
[2,-1,-3] => [-1,2,-3] => [1]
=> [1,0,1,0]
=> 0
[-2,1,3] => [-2,-1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-2,1,-3] => [-2,-1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[-2,-1,3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-2,-1,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[2,3,1] => [3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,3,-1] => [-1,2,3] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[2,-3,1] => [-3,2,-1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,-3,-1] => [-1,2,-3] => [1]
=> [1,0,1,0]
=> 0
[-2,3,1] => [-2,-1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-2,3,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-2,-3,1] => [-2,-1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[-2,-3,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[3,1,2] => [3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,1,-2] => [3,-2,1] => [2]
=> [1,1,0,0,1,0]
=> 0
[3,-1,2] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[3,-1,-2] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-3,1,2] => [-3,2,-1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-3,1,-2] => [-3,-2,-1] => [2]
=> [1,1,0,0,1,0]
=> 0
[-3,-1,2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-3,-1,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[3,2,1] => [3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,2,-1] => [-1,3,2] => [2]
=> [1,1,0,0,1,0]
=> 0
[3,-2,1] => [-2,-1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,-2,-1] => [-1,-2,3] => [1]
=> [1,0,1,0]
=> 0
[-3,2,1] => [-3,2,-1] => [2,1]
=> [1,0,1,0,1,0]
=> 0
[-3,2,-1] => [-1,-3,-2] => [2]
=> [1,1,0,0,1,0]
=> 0
[-3,-2,1] => [-2,-1,-3] => [2]
=> [1,1,0,0,1,0]
=> 0
[-3,-2,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,2,3,-4] => [1,2,3,-4] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,-3,4] => [1,2,-3,-4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,2,-3,-4] => [1,2,-3,-4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2,3,4] => [1,-2,-3,4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,-2,3,-4] => [1,-2,-3,-4] => [1]
=> [1,0,1,0]
=> 0
[1,-2,-3,4] => [1,-2,-3,-4] => [1]
=> [1,0,1,0]
=> 0
[1,-2,-3,-4] => [1,-2,-3,-4] => [1]
=> [1,0,1,0]
=> 0
[-1,2,3,4] => [-1,-2,3,4] => [1,1]
=> [1,0,1,1,0,0]
=> 1
[-1,2,-3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,2,-3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,2,-4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,4,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-4,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,4,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-4,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-2,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-2,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-3,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-3,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The bounce deficit of a Dyck path. For a Dyck path $D$ of semilength $n$, this is defined as $$\binom{n}{2} - \operatorname{area}(D) - \operatorname{bounce}(D).$$ The zeta map [[Mp00032]] sends this statistic to the dinv deficit [[St000369]], both are thus equidistributed.
Mp00260: Signed permutations Demazure product with inverseSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001392: Integer partitions ⟶ ℤResult quality: 77% values known / values provided: 77%distinct values known / distinct values provided: 80%
Values
[1] => [1] => [1]
=> [1]
=> 0
[-1] => [-1] => []
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [2]
=> 1
[1,-2] => [1,-2] => [1]
=> [1]
=> 0
[-1,2] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[-1,-2] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[2,1] => [2,1] => [2]
=> [1,1]
=> 0
[2,-1] => [-1,2] => [1]
=> [1]
=> 0
[-2,1] => [-2,-1] => [2]
=> [1,1]
=> 0
[-2,-1] => [-1,-2] => []
=> []
=> ? ∊ {0,0,0}
[1,2,3] => [1,2,3] => [1,1,1]
=> [3]
=> 2
[1,2,-3] => [1,2,-3] => [1,1]
=> [2]
=> 1
[1,-2,3] => [1,-2,-3] => [1]
=> [1]
=> 0
[1,-2,-3] => [1,-2,-3] => [1]
=> [1]
=> 0
[-1,2,3] => [-1,-2,3] => [1]
=> [1]
=> 0
[-1,2,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-2,3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-2,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [2,1]
=> 0
[1,3,-2] => [1,-2,3] => [1,1]
=> [2]
=> 1
[1,-3,2] => [1,-3,-2] => [2,1]
=> [2,1]
=> 0
[1,-3,-2] => [1,-2,-3] => [1]
=> [1]
=> 0
[-1,3,2] => [-1,-2,3] => [1]
=> [1]
=> 0
[-1,3,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-3,2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-1,-3,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [2,1]
=> 0
[2,1,-3] => [2,1,-3] => [2]
=> [1,1]
=> 0
[2,-1,3] => [-1,2,-3] => [1]
=> [1]
=> 0
[2,-1,-3] => [-1,2,-3] => [1]
=> [1]
=> 0
[-2,1,3] => [-2,-1,3] => [2,1]
=> [2,1]
=> 0
[-2,1,-3] => [-2,-1,-3] => [2]
=> [1,1]
=> 0
[-2,-1,3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-2,-1,-3] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[2,3,1] => [3,2,1] => [2,1]
=> [2,1]
=> 0
[2,3,-1] => [-1,2,3] => [1,1]
=> [2]
=> 1
[2,-3,1] => [-3,2,-1] => [2,1]
=> [2,1]
=> 0
[2,-3,-1] => [-1,2,-3] => [1]
=> [1]
=> 0
[-2,3,1] => [-2,-1,3] => [2,1]
=> [2,1]
=> 0
[-2,3,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-2,-3,1] => [-2,-1,-3] => [2]
=> [1,1]
=> 0
[-2,-3,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[3,1,2] => [3,2,1] => [2,1]
=> [2,1]
=> 0
[3,1,-2] => [3,-2,1] => [2]
=> [1,1]
=> 0
[3,-1,2] => [-1,-2,3] => [1]
=> [1]
=> 0
[3,-1,-2] => [-1,-2,3] => [1]
=> [1]
=> 0
[-3,1,2] => [-3,2,-1] => [2,1]
=> [2,1]
=> 0
[-3,1,-2] => [-3,-2,-1] => [2]
=> [1,1]
=> 0
[-3,-1,2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[-3,-1,-2] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[3,2,1] => [3,2,1] => [2,1]
=> [2,1]
=> 0
[3,2,-1] => [-1,3,2] => [2]
=> [1,1]
=> 0
[3,-2,1] => [-2,-1,3] => [2,1]
=> [2,1]
=> 0
[3,-2,-1] => [-1,-2,3] => [1]
=> [1]
=> 0
[-3,2,1] => [-3,2,-1] => [2,1]
=> [2,1]
=> 0
[-3,2,-1] => [-1,-3,-2] => [2]
=> [1,1]
=> 0
[-3,-2,1] => [-2,-1,-3] => [2]
=> [1,1]
=> 0
[-3,-2,-1] => [-1,-2,-3] => []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2}
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [4]
=> 3
[1,2,3,-4] => [1,2,3,-4] => [1,1,1]
=> [3]
=> 2
[1,2,-3,4] => [1,2,-3,-4] => [1,1]
=> [2]
=> 1
[1,2,-3,-4] => [1,2,-3,-4] => [1,1]
=> [2]
=> 1
[1,-2,3,4] => [1,-2,-3,4] => [1,1]
=> [2]
=> 1
[1,-2,3,-4] => [1,-2,-3,-4] => [1]
=> [1]
=> 0
[1,-2,-3,4] => [1,-2,-3,-4] => [1]
=> [1]
=> 0
[1,-2,-3,-4] => [1,-2,-3,-4] => [1]
=> [1]
=> 0
[-1,2,3,4] => [-1,-2,3,4] => [1,1]
=> [2]
=> 1
[-1,2,-3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,2,-3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-3,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,2,-4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,4,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-4,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-2,-4,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-2,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-2,-4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,3,-4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,4,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-4,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-3,-4,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-2,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-2,3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-2,-3] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-3,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,4,-3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-3,2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-1,-4,-3,-2] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,3,4] => [-1,-2,-3,-4] => []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Mp00163: Signed permutations permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000175: Integer partitions ⟶ ℤResult quality: 73% values known / values provided: 73%distinct values known / distinct values provided: 80%
Values
[1] => [1] => [1,0]
=> []
=> ? ∊ {0,0}
[-1] => [1] => [1,0]
=> []
=> ? ∊ {0,0}
[1,2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[1,-2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[-1,2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[-1,-2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[2,-1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[-2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[-2,-1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,-2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,-2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,-2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,-2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,-3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,-3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,-3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,-3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,-1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,-1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,-1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,-1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,-3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,-3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,-3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,-3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,-2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,-2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,-2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,-2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[-1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[-1,2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[-1,2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[-1,2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[-1,-2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[-1,-2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,-1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,-1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,-1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,-1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[4,-1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
[-4,1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4}
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial $$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$ The statistic of the degree of this polynomial. For example, the partition $(3, 2, 1, 1, 1)$ gives $$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$ which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$. This is the same as the number of unordered pairs of different parts, which follows from: $$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Mp00163: Signed permutations permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000225: Integer partitions ⟶ ℤResult quality: 60% values known / values provided: 73%distinct values known / distinct values provided: 60%
Values
[1] => [1] => [1,0]
=> []
=> ? ∊ {0,0}
[-1] => [1] => [1,0]
=> []
=> ? ∊ {0,0}
[1,2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[1,-2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[-1,2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[-1,-2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[2,-1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[-2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[-2,-1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,-2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,-2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,-2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[-1,-2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,-3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,-3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,-3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[-1,-3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 0
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,-1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,-1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,-1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,-1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,-3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,-3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,-3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,-3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,-2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,-2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,-2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,-2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[-1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[-1,2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[-1,2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[-1,2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[-1,-2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[-1,-2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
Difference between largest and smallest parts in a partition.
Mp00163: Signed permutations permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001714: Integer partitions ⟶ ℤResult quality: 60% values known / values provided: 73%distinct values known / distinct values provided: 60%
Values
[1] => [1] => [1,0]
=> []
=> ? ∊ {0,0}
[-1] => [1] => [1,0]
=> []
=> ? ∊ {0,0}
[1,2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[1,-2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[-1,2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[-1,-2] => [1,2] => [1,0,1,0]
=> [1]
=> 0
[2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[2,-1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[-2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[-2,-1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,0,0,1}
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[1,2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[1,-2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[1,-2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[-1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[-1,2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[-1,-2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[-1,-2,-3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,-3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,-3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[-1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[-1,3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[-1,-3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[-1,-3,-2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,-1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,-1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,-1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[-2,-1,-3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0
[2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,-3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[2,-3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,-3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[-2,-3,-1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0
[3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-1,-2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[3,-2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[-3,-2,-1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2}
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,-2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,-2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,-2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,-2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[-1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[-1,2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[-1,2,-3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[-1,2,-3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[-1,-2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[-1,-2,3,-4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,-2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,-1,-2,-3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[4,-1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-4,1,-3,-2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. In particular, partitions with statistic $0$ are wide partitions.
Mp00169: Signed permutations odd cycle typeInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 72% values known / values provided: 72%distinct values known / distinct values provided: 80%
Values
[1] => []
=> ? = 0
[-1] => [1]
=> 0
[1,2] => []
=> ? ∊ {0,0,0}
[1,-2] => [1]
=> 0
[-1,2] => [1]
=> 0
[-1,-2] => [1,1]
=> 1
[2,1] => []
=> ? ∊ {0,0,0}
[2,-1] => [2]
=> 0
[-2,1] => [2]
=> 0
[-2,-1] => []
=> ? ∊ {0,0,0}
[1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[1,2,-3] => [1]
=> 0
[1,-2,3] => [1]
=> 0
[1,-2,-3] => [1,1]
=> 1
[-1,2,3] => [1]
=> 0
[-1,2,-3] => [1,1]
=> 1
[-1,-2,3] => [1,1]
=> 1
[-1,-2,-3] => [1,1,1]
=> 2
[1,3,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[1,3,-2] => [2]
=> 0
[1,-3,2] => [2]
=> 0
[1,-3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-1,3,2] => [1]
=> 0
[-1,3,-2] => [2,1]
=> 1
[-1,-3,2] => [2,1]
=> 1
[-1,-3,-2] => [1]
=> 0
[2,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[2,1,-3] => [1]
=> 0
[2,-1,3] => [2]
=> 0
[2,-1,-3] => [2,1]
=> 1
[-2,1,3] => [2]
=> 0
[-2,1,-3] => [2,1]
=> 1
[-2,-1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-2,-1,-3] => [1]
=> 0
[2,3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[2,3,-1] => [3]
=> 0
[2,-3,1] => [3]
=> 0
[2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-2,3,1] => [3]
=> 0
[-2,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-2,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-2,-3,-1] => [3]
=> 0
[3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[3,1,-2] => [3]
=> 0
[3,-1,2] => [3]
=> 0
[3,-1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-3,1,2] => [3]
=> 0
[-3,1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-3,-1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-3,-1,-2] => [3]
=> 0
[3,2,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[3,2,-1] => [2]
=> 0
[3,-2,1] => [1]
=> 0
[3,-2,-1] => [2,1]
=> 1
[-3,2,1] => [2]
=> 0
[-3,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,2,2,2}
[-3,-2,1] => [2,1]
=> 1
[-3,-2,-1] => [1]
=> 0
[1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,2,3,-4] => [1]
=> 0
[1,2,-3,4] => [1]
=> 0
[1,2,-3,-4] => [1,1]
=> 1
[1,-2,3,4] => [1]
=> 0
[1,-2,3,-4] => [1,1]
=> 1
[1,-2,-3,4] => [1,1]
=> 1
[1,-2,-3,-4] => [1,1,1]
=> 2
[-1,2,3,4] => [1]
=> 0
[-1,2,3,-4] => [1,1]
=> 1
[-1,2,-3,4] => [1,1]
=> 1
[-1,2,-3,-4] => [1,1,1]
=> 2
[1,2,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,-2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,4,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,-4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,-4,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,-2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,-2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,3,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,-1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,-1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-3,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Mp00169: Signed permutations odd cycle typeInteger partitions
St001440: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 72%distinct values known / distinct values provided: 40%
Values
[1] => []
=> ? = 0
[-1] => [1]
=> 0
[1,2] => []
=> ? ∊ {0,0,0}
[1,-2] => [1]
=> 0
[-1,2] => [1]
=> 0
[-1,-2] => [1,1]
=> 1
[2,1] => []
=> ? ∊ {0,0,0}
[2,-1] => [2]
=> 0
[-2,1] => [2]
=> 0
[-2,-1] => []
=> ? ∊ {0,0,0}
[1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[1,2,-3] => [1]
=> 0
[1,-2,3] => [1]
=> 0
[1,-2,-3] => [1,1]
=> 1
[-1,2,3] => [1]
=> 0
[-1,2,-3] => [1,1]
=> 1
[-1,-2,3] => [1,1]
=> 1
[-1,-2,-3] => [1,1,1]
=> 0
[1,3,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[1,3,-2] => [2]
=> 0
[1,-3,2] => [2]
=> 0
[1,-3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-1,3,2] => [1]
=> 0
[-1,3,-2] => [2,1]
=> 1
[-1,-3,2] => [2,1]
=> 1
[-1,-3,-2] => [1]
=> 0
[2,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[2,1,-3] => [1]
=> 0
[2,-1,3] => [2]
=> 0
[2,-1,-3] => [2,1]
=> 1
[-2,1,3] => [2]
=> 0
[-2,1,-3] => [2,1]
=> 1
[-2,-1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-2,-1,-3] => [1]
=> 0
[2,3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[2,3,-1] => [3]
=> 0
[2,-3,1] => [3]
=> 0
[2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-2,3,1] => [3]
=> 0
[-2,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-2,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-2,-3,-1] => [3]
=> 0
[3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[3,1,-2] => [3]
=> 0
[3,-1,2] => [3]
=> 0
[3,-1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-3,1,2] => [3]
=> 0
[-3,1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-3,-1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-3,-1,-2] => [3]
=> 0
[3,2,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[3,2,-1] => [2]
=> 0
[3,-2,1] => [1]
=> 0
[3,-2,-1] => [2,1]
=> 1
[-3,2,1] => [2]
=> 0
[-3,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,2,2,2,2}
[-3,-2,1] => [2,1]
=> 1
[-3,-2,-1] => [1]
=> 0
[1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,2,3,-4] => [1]
=> 0
[1,2,-3,4] => [1]
=> 0
[1,2,-3,-4] => [1,1]
=> 1
[1,-2,3,4] => [1]
=> 0
[1,-2,3,-4] => [1,1]
=> 1
[1,-2,-3,4] => [1,1]
=> 1
[1,-2,-3,-4] => [1,1,1]
=> 0
[-1,2,3,4] => [1]
=> 0
[-1,2,3,-4] => [1,1]
=> 1
[-1,2,-3,4] => [1,1]
=> 1
[-1,2,-3,-4] => [1,1,1]
=> 0
[1,2,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,-2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,4,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,-4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,-4,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,-2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,-2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,3,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,-1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,-1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-3,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Mp00169: Signed permutations odd cycle typeInteger partitions
St001912: Integer partitions ⟶ ℤResult quality: 60% values known / values provided: 72%distinct values known / distinct values provided: 60%
Values
[1] => []
=> ? = 0
[-1] => [1]
=> 0
[1,2] => []
=> ? ∊ {0,0,1}
[1,-2] => [1]
=> 0
[-1,2] => [1]
=> 0
[-1,-2] => [1,1]
=> 0
[2,1] => []
=> ? ∊ {0,0,1}
[2,-1] => [2]
=> 0
[-2,1] => [2]
=> 0
[-2,-1] => []
=> ? ∊ {0,0,1}
[1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[1,2,-3] => [1]
=> 0
[1,-2,3] => [1]
=> 0
[1,-2,-3] => [1,1]
=> 0
[-1,2,3] => [1]
=> 0
[-1,2,-3] => [1,1]
=> 0
[-1,-2,3] => [1,1]
=> 0
[-1,-2,-3] => [1,1,1]
=> 2
[1,3,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[1,3,-2] => [2]
=> 0
[1,-3,2] => [2]
=> 0
[1,-3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-1,3,2] => [1]
=> 0
[-1,3,-2] => [2,1]
=> 0
[-1,-3,2] => [2,1]
=> 0
[-1,-3,-2] => [1]
=> 0
[2,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[2,1,-3] => [1]
=> 0
[2,-1,3] => [2]
=> 0
[2,-1,-3] => [2,1]
=> 0
[-2,1,3] => [2]
=> 0
[-2,1,-3] => [2,1]
=> 0
[-2,-1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-2,-1,-3] => [1]
=> 0
[2,3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[2,3,-1] => [3]
=> 1
[2,-3,1] => [3]
=> 1
[2,-3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-2,3,1] => [3]
=> 1
[-2,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-2,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-2,-3,-1] => [3]
=> 1
[3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[3,1,-2] => [3]
=> 1
[3,-1,2] => [3]
=> 1
[3,-1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-3,1,2] => [3]
=> 1
[-3,1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-3,-1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-3,-1,-2] => [3]
=> 1
[3,2,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[3,2,-1] => [2]
=> 0
[3,-2,1] => [1]
=> 0
[3,-2,-1] => [2,1]
=> 0
[-3,2,1] => [2]
=> 0
[-3,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,2,2,2}
[-3,-2,1] => [2,1]
=> 0
[-3,-2,-1] => [1]
=> 0
[1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,2,3,-4] => [1]
=> 0
[1,2,-3,4] => [1]
=> 0
[1,2,-3,-4] => [1,1]
=> 0
[1,-2,3,4] => [1]
=> 0
[1,-2,3,-4] => [1,1]
=> 0
[1,-2,-3,4] => [1,1]
=> 0
[1,-2,-3,-4] => [1,1,1]
=> 2
[-1,2,3,4] => [1]
=> 0
[-1,2,3,-4] => [1,1]
=> 0
[-1,2,-3,4] => [1,1]
=> 0
[-1,2,-3,-4] => [1,1,1]
=> 2
[1,2,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,2,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,-2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,4,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,3,-4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-3,-4,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,-2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,-2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,4,3,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,-4,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,1,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,4,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-1,-4,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,-1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,-1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,-3,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,3,-4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[2,-3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[-2,3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. Bulgarian solitaire is the dynamical system where a move consists of removing the first column of the Ferrers diagram and inserting it as a row.
The following 716 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000010The length of the partition. St000012The area of a Dyck path. St000142The number of even parts of a partition. St000143The largest repeated part of a partition. St000147The largest part of an integer partition. St000148The number of odd parts of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000160The multiplicity of the smallest part of a partition. St000228The size of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000377The dinv defect of an integer partition. St000378The diagonal inversion number of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000519The largest length of a factor maximising the subword complexity. St000548The number of different non-empty partial sums of an integer partition. St000549The number of odd partial sums of an integer partition. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000784The maximum of the length and the largest part of the integer partition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000867The sum of the hook lengths in the first row of an integer partition. St000931The number of occurrences of the pattern UUU in a Dyck path. St000944The 3-degree of an integer partition. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000992The alternating sum of the parts of an integer partition. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001092The number of distinct even parts of a partition. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001214The aft of an integer partition. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001280The number of parts of an integer partition that are at least two. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001423The number of distinct cubes in a binary word. St001424The number of distinct squares in a binary word. St001484The number of singletons of an integer partition. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001524The degree of symmetry of a binary word. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000011The number of touch points (or returns) of a Dyck path. St000013The height of a Dyck path. St000019The cardinality of the support of a permutation. St000025The number of initial rises of a Dyck path. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000041The number of nestings of a perfect matching. St000052The number of valleys of a Dyck path not on the x-axis. St000053The number of valleys of the Dyck path. St000057The Shynar inversion number of a standard tableau. St000067The inversion number of the alternating sign matrix. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000089The absolute variation of a composition. St000117The number of centered tunnels of a Dyck path. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000120The number of left tunnels of a Dyck path. St000133The "bounce" of a permutation. St000141The maximum drop size of a permutation. St000150The floored half-sum of the multiplicities of a partition. St000155The number of exceedances (also excedences) of a permutation. St000161The sum of the sizes of the right subtrees of a binary tree. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000168The number of internal nodes of an ordered tree. St000177The number of free tiles in the pattern. St000178Number of free entries. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000204The number of internal nodes of a binary tree. St000209Maximum difference of elements in cycles. St000211The rank of the set partition. St000222The number of alignments in the permutation. St000224The sorting index of a permutation. St000234The number of global ascents of a permutation. St000238The number of indices that are not small weak excedances. St000242The number of indices that are not cyclical small weak excedances. St000257The number of distinct parts of a partition that occur at least twice. St000288The number of ones in a binary word. St000292The number of ascents of a binary word. St000293The number of inversions of a binary word. St000295The length of the border of a binary word. St000304The load of a permutation. St000306The bounce count of a Dyck path. St000316The number of non-left-to-right-maxima of a permutation. St000317The cycle descent number of a permutation. St000331The number of upper interactions of a Dyck path. St000332The positive inversions of an alternating sign matrix. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000338The number of pixed points of a permutation. St000339The maf index of a permutation. St000352The Elizalde-Pak rank of a permutation. St000353The number of inner valleys of a permutation. St000355The number of occurrences of the pattern 21-3. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000389The number of runs of ones of odd length in a binary word. St000392The length of the longest run of ones in a binary word. St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000424The number of occurrences of the pattern 132 or of the pattern 231 in a permutation. St000426The number of occurrences of the pattern 132 or of the pattern 312 in a permutation. St000427The number of occurrences of the pattern 123 or of the pattern 231 in a permutation. St000428The number of occurrences of the pattern 123 or of the pattern 213 in a permutation. St000431The number of occurrences of the pattern 213 or of the pattern 321 in a permutation. St000433The number of occurrences of the pattern 132 or of the pattern 321 in a permutation. St000434The number of occurrences of the pattern 213 or of the pattern 312 in a permutation. St000435The number of occurrences of the pattern 213 or of the pattern 231 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000445The number of rises of length 1 of a Dyck path. St000446The disorder of a permutation. St000457The number of occurrences of one of the patterns 132, 213 or 321 in a permutation. St000461The rix statistic of a permutation. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000481The number of upper covers of a partition in dominance order. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000507The number of ascents of a standard tableau. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000538The number of even inversions of a permutation. St000547The number of even non-empty partial sums of an integer partition. St000624The normalized sum of the minimal distances to a greater element. St000628The balance of a binary word. St000632The jump number of the poset. St000645The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. St000650The number of 3-rises of a permutation. St000651The maximal size of a rise in a permutation. St000660The number of rises of length at least 3 of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000664The number of right ropes of a permutation. St000670The reversal length of a permutation. St000676The number of odd rises of a Dyck path. St000682The Grundy value of Welter's game on a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000691The number of changes of a binary word. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St000732The number of double deficiencies of a permutation. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000753The Grundy value for the game of Kayles on a binary word. St000754The Grundy value for the game of removing nestings in a perfect matching. St000779The tier of a permutation. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000836The number of descents of distance 2 of a permutation. St000837The number of ascents of distance 2 of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000868The aid statistic in the sense of Shareshian-Wachs. St000877The depth of the binary word interpreted as a path. St000921The number of internal inversions of a binary word. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000961The shifted major index of a permutation. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001034The area of the parallelogram polyomino associated with the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001078The minimal number of occurrences of (12) in a factorization of a permutation into transpositions (12) and cycles (1,. St001082The number of boxed occurrences of 123 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001091The number of parts in an integer partition whose next smaller part has the same size. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001130The number of two successive successions in a permutation. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001152The number of pairs with even minimum in a perfect matching. St001153The number of blocks with even minimum in a set partition. St001161The major index north count of a Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001263The index of the maximal parabolic seaweed algebra associated with the composition. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001298The number of repeated entries in the Lehmer code of a permutation. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001375The pancake length of a permutation. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001394The genus of a permutation. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001402The number of separators in a permutation. St001403The number of vertical separators in a permutation. St001411The number of patterns 321 or 3412 in a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001469The holeyness of a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001511The minimal number of transpositions needed to sort a permutation in either direction. St001535The number of cyclic alignments of a permutation. St001556The number of inversions of the third entry of a permutation. St001557The number of inversions of the second entry of a permutation. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001565The number of arithmetic progressions of length 2 in a permutation. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001584The area statistic between a Dyck path and its bounce path. St001596The number of two-by-two squares inside a skew partition. St001639The number of alternating subsets such that applying the permutation does not yield an alternating subset. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001665The number of pure excedances of a permutation. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001684The reduced word complexity of a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001695The natural comajor index of a standard Young tableau. St001697The shifted natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001726The number of visible inversions of a permutation. St001727The number of invisible inversions of a permutation. St001728The number of invisible descents of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001760The number of prefix or suffix reversals needed to sort a permutation. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001777The number of weak descents in an integer composition. St001801Half the number of preimage-image pairs of different parity in a permutation. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001810The number of fixed points of a permutation smaller than its largest moved point. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001856The number of edges in the reduced word graph of a permutation. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001874Lusztig's a-function for the symmetric group. St001910The height of the middle non-run of a Dyck path. St001911A descent variant minus the number of inversions. St001930The weak major index of a binary word. St001931The weak major index of an integer composition regarded as a word. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001960The number of descents of a permutation minus one if its first entry is not one. St001961The sum of the greatest common divisors of all pairs of parts. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000929The constant term of the character polynomial of an integer partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St000938The number of zeros of the symmetric group character corresponding to the partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001651The Frankl number of a lattice. St001175The size of a partition minus the hook length of the base cell. St001586The number of odd parts smaller than the largest even part in an integer partition. St000442The maximal area to the right of an up step of a Dyck path. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000658The number of rises of length 2 of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000693The modular (standard) major index of a standard tableau. St000936The number of even values of the symmetric group character corresponding to the partition. St000984The number of boxes below precisely one peak. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St000083The number of left oriented leafs of a binary tree except the first one. St000216The absolute length of a permutation. St000219The number of occurrences of the pattern 231 in a permutation. St000290The major index of a binary word. St000291The number of descents of a binary word. St000297The number of leading ones in a binary word. St000347The inversion sum of a binary word. St000348The non-inversion sum of a binary word. St000354The number of recoils of a permutation. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000432The number of occurrences of the pattern 231 or of the pattern 312 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000462The major index minus the number of excedences of a permutation. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000486The number of cycles of length at least 3 of a permutation. St000491The number of inversions of a set partition. St000494The number of inversions of distance at most 3 of a permutation. St000495The number of inversions of distance at most 2 of a permutation. St000497The lcb statistic of a set partition. St000502The number of successions of a set partitions. St000503The maximal difference between two elements in a common block. St000516The number of stretching pairs of a permutation. St000539The number of odd inversions of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000554The number of occurrences of the pattern {{1,2},{3}} in a set partition. St000555The number of occurrences of the pattern {{1,3},{2}} in a set partition. St000556The number of occurrences of the pattern {{1},{2,3}} in a set partition. St000557The number of occurrences of the pattern {{1},{2},{3}} in a set partition. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000561The number of occurrences of the pattern {{1,2,3}} in a set partition. St000565The major index of a set partition. St000572The dimension exponent of a set partition. St000580The number of occurrences of the pattern {{1},{2},{3}} such that 2 is minimal, 3 is maximal. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000582The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000584The number of occurrences of the pattern {{1},{2},{3}} such that 1 is minimal, 3 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000586The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal. St000587The number of occurrences of the pattern {{1},{2},{3}} such that 1 is minimal. St000588The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are minimal, 2 is maximal. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000591The number of occurrences of the pattern {{1},{2},{3}} such that 2 is maximal. St000592The number of occurrences of the pattern {{1},{2},{3}} such that 1 is maximal. St000593The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000595The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal. St000596The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1 is maximal. St000597The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, (2,3) are consecutive in a block. St000598The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, 3 is maximal, (2,3) are consecutive in a block. St000599The number of occurrences of the pattern {{1},{2,3}} such that (2,3) are consecutive in a block. St000600The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, (1,3) are consecutive in a block. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000602The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal. St000603The number of occurrences of the pattern {{1},{2},{3}} such that 2,3 are minimal. St000604The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 2 is maximal. St000605The number of occurrences of the pattern {{1},{2,3}} such that 3 is maximal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000607The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 3 is maximal, (2,3) are consecutive in a block. St000608The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal, 3 is maximal. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000612The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, (2,3) are consecutive in a block. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000614The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, 3 is maximal, (2,3) are consecutive in a block. St000615The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are maximal. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000646The number of big ascents of a permutation. St000649The number of 3-excedences of a permutation. St000653The last descent of a permutation. St000677The standardized bi-alternating inversion number of a permutation. St000726The normalized sum of the leaf labels of the increasing binary tree associated to a permutation. St000728The dimension of a set partition. St000730The maximal arc length of a set partition. St000747A variant of the major index of a set partition. St000748The major index of the permutation obtained by flattening the set partition. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000809The reduced reflection length of the permutation. St000829The Ulam distance of a permutation to the identity permutation. St000831The number of indices that are either descents or recoils. St000833The comajor index of a permutation. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000872The number of very big descents of a permutation. St000874The position of the last double rise in a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000881The number of short braid edges in the graph of braid moves of a permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St000947The major index east count of a Dyck path. St000956The maximal displacement of a permutation. St000957The number of Bruhat lower covers of a permutation. St000963The 2-shifted major index of a permutation. St000976The sum of the positions of double up-steps of a Dyck path. St000989The number of final rises of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001080The minimal length of a factorization of a permutation using the transposition (12) and the cycle (1,. St001095The number of non-isomorphic posets with precisely one further covering relation. St001114The number of odd descents of a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001388The number of non-attacking neighbors of a permutation. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001485The modular major index of a binary word. St001520The number of strict 3-descents. St001552The number of inversions between excedances and fixed points of a permutation. St001569The maximal modular displacement of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001731The factorization defect of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001948The number of augmented double ascents of a permutation. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000478Another weight of a partition according to Alladi. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000934The 2-degree of an integer partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001541The Gini index of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001498The normalised height of a Nakayama algebra with magnitude 1. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001570The minimal number of edges to add to make a graph Hamiltonian. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000137The Grundy value of an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001389The number of partitions of the same length below the given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000014The number of parking functions supported by a Dyck path. St000015The number of peaks of a Dyck path. St000016The number of attacking pairs of a standard tableau. St000017The number of inversions of a standard tableau. St000026The position of the first return of a Dyck path. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000038The product of the heights of the descending steps of a Dyck path. St000048The multinomial of the parts of a partition. St000063The number of linear extensions of a certain poset defined for an integer partition. St000088The row sums of the character table of the symmetric group. St000108The number of partitions contained in the given partition. St000144The pyramid weight of the Dyck path. St000159The number of distinct parts of the integer partition. St000179The product of the hook lengths of the integer partition. St000183The side length of the Durfee square of an integer partition. St000184The size of the centralizer of any permutation of given cycle type. St000185The weighted size of a partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000296The length of the symmetric border of a binary word. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000335The difference of lower and upper interactions. St000340The number of non-final maximal constant sub-paths of length greater than one. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000390The number of runs of ones in a binary word. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000443The number of long tunnels of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000480The number of lower covers of a partition in dominance order. St000511The number of invariant subsets when acting with a permutation of given cycle type. St000531The leading coefficient of the rook polynomial of an integer partition. St000532The total number of rook placements on a Ferrers board. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000627The exponent of a binary word. St000629The defect of a binary word. St000631The number of distinct palindromic decompositions of a binary word. St000644The number of graphs with given frequency partition. St000655The length of the minimal rise of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000733The row containing the largest entry of a standard tableau. St000734The last entry in the first row of a standard tableau. St000738The first entry in the last row of a standard tableau. St000759The smallest missing part in an integer partition. St000783The side length of the largest staircase partition fitting into a partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000811The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000869The sum of the hook lengths of an integer partition. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000897The number of different multiplicities of parts of an integer partition. St000922The minimal number such that all substrings of this length are unique. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000935The number of ordered refinements of an integer partition. St000952Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000982The length of the longest constant subword. St000995The largest even part of an integer partition. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001019Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001127The sum of the squares of the parts of a partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001255The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001371The length of the longest Yamanouchi prefix of a binary word. St001378The product of the cohook lengths of the integer partition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001435The number of missing boxes in the first row. St001437The flex of a binary word. St001438The number of missing boxes of a skew partition. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001473The absolute value of the sum of all entries of the Coxeter matrix of the corresponding LNakayama algebra. St001481The minimal height of a peak of a Dyck path. St001488The number of corners of a skew partition. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001523The degree of symmetry of a Dyck path. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001530The depth of a Dyck path. St001564The value of the forgotten symmetric functions when all variables set to 1. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001612The number of coloured multisets of cycles such that the multiplicities of colours are given by a partition. St001614The cyclic permutation representation number of a skew partition. St001643The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001710The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation. St001721The degree of a binary word. St001732The number of peaks visible from the left. St001733The number of weak left to right maxima of a Dyck path. St001809The index of the step at the first peak of maximal height in a Dyck path. St001814The number of partitions interlacing the given partition. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St001884The number of borders of a binary word. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001955The number of natural descents for set-valued two row standard Young tableaux. St001956The comajor index for set-valued two-row standard Young tableaux. St001959The product of the heights of the peaks of a Dyck path. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001128The exponens consonantiae of a partition. St000456The monochromatic index of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000567The sum of the products of all pairs of parts. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000284The Plancherel distribution on integer partitions. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001568The smallest positive integer that does not appear twice in the partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000418The number of Dyck paths that are weakly below a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000438The position of the last up step in a Dyck path. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000674The number of hills of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000706The product of the factorials of the multiplicities of an integer partition. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001808The box weight or horizontal decoration of a Dyck path.