Your data matches 39 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001777: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,1] => 1
[2] => 0
[1,1,1] => 2
[1,2] => 0
[2,1] => 1
[3] => 0
[1,1,1,1] => 3
[1,1,2] => 1
[1,2,1] => 1
[1,3] => 0
[2,1,1] => 2
[2,2] => 1
[3,1] => 1
[4] => 0
[1,1,1,1,1] => 4
[1,1,1,2] => 2
[1,1,2,1] => 2
[1,1,3] => 1
[1,2,1,1] => 2
[1,2,2] => 1
[1,3,1] => 1
[1,4] => 0
[2,1,1,1] => 3
[2,1,2] => 1
[2,2,1] => 2
[2,3] => 0
[3,1,1] => 2
[3,2] => 1
[4,1] => 1
[5] => 0
[1,1,1,1,1,1] => 5
[1,1,1,1,2] => 3
[1,1,1,2,1] => 3
[1,1,1,3] => 2
[1,1,2,1,1] => 3
[1,1,2,2] => 2
[1,1,3,1] => 2
[1,1,4] => 1
[1,2,1,1,1] => 3
[1,2,1,2] => 1
[1,2,2,1] => 2
[1,2,3] => 0
[1,3,1,1] => 2
[1,3,2] => 1
[1,4,1] => 1
[1,5] => 0
[2,1,1,1,1] => 4
[2,1,1,2] => 2
[2,1,2,1] => 2
Description
The number of weak descents in an integer composition. A weak descent of an integer composition $\alpha=(a_1, \dots, a_n)$ is an index $1\leq i < n$ such that $a_i \geq a_{i+1}$.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 70%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1] => [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2] => [1,1] => [2] => ([],2)
=> ? ∊ {0,2} + 1
[2,1] => [1,1] => [2] => ([],2)
=> ? ∊ {0,2} + 1
[3] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1,1,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,2] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,3} + 1
[1,2,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,1,1,3} + 1
[1,3] => [1,1] => [2] => ([],2)
=> ? ∊ {0,1,1,3} + 1
[2,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,2] => [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[3,1] => [1,1] => [2] => ([],2)
=> ? ∊ {0,1,1,3} + 1
[4] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1,1,1,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,2] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[1,1,2,1] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[1,1,3] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[1,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,3,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[1,4] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[2,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,2] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[2,2,1] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[2,3] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[3,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[4,1] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,1,1,1,1,1,2,3,4} + 1
[5] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,2] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,1,1,2,1] => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,1,1,3] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,1,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,3,1] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,1,4] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,1,2] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,2,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,2,3] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,3,2] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,4,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[1,5] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[2,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[2,1,2,1] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[2,1,3] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[2,2,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,2,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,3,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[2,4] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[3,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,2] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[3,2,1] => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[3,3] => [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[5,1] => [1,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,5} + 1
[6] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,1,1,2] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,1,1,2,1] => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,1,1,3] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,1,2,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,2,2] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,3,1] => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,1,4] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,2,1,2] => [2,1,1,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,2,2,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,2,3] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,3,2] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,4,1] => [2,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,1,5] => [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,2,1,1,1,1] => [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,2,1,2,1] => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,2,1,3] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6} + 1
[1,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,2,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[7] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001879
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St001879: Posets ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 0
[1,1] => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,2] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,1}
[2,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,1}
[3] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1}
[1,1,1,1] => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,1,2] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,1,1,1,1}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,3] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1}
[2,1,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,0,1,1,1,1}
[2,2] => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1}
[3,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1}
[4] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1}
[1,1,1,1,1] => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[1,1,3] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[1,2,2] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,4] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,2,1] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[2,3] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[3,1,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[3,2] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[4,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[5] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,3}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,4] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,5] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[2,1,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,2,1,1] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[2,2,2] => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,4] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[3,1,1,1] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[3,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[3,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[3,3] => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[4,1,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[4,2] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[5,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[6] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4}
[1,1,1,1,1,1,1] => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[1,1,1,1,1,2] => [5,1] => [[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,1,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,1,3] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,2,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,2,1,2,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,1,3] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,3,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,4] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,3,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,4,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,5,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,1,3,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[2,1,4] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[3,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[3,1,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[4,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[4,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,2,1,3,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,1,4] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,3,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,4,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,5] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,3,1,2,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,3,1,3] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,3,4] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,4,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,4,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,4,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,5,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[1,6,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
[2,1,2,1,2] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[2,1,2,3] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[2,1,3,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Mp00231: Integer compositions bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001124: Integer partitions ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 50%
Values
[1] => [1,0]
=> [1,0]
=> []
=> ? = 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? ∊ {0,1}
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> ? ∊ {0,1}
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {0,2}
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1]
=> ? ∊ {0,2}
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,3}
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,3}
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {2,4}
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {2,4}
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 3
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {3,5}
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> 3
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {3,5}
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 2
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> 2
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> 3
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> 2
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 2
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 3
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 2
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 3
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,3,2,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,3,2,1,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,6}
[1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,2,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,2,2,2,2,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,3,3,3,3,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,2,2,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,3,3,3,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,3,3,3,2,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,3,3,3,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,3,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3,3,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3,3,2,2,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
[1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3,3,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,7}
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{(n-1)1}$, for $\lambda\vdash n > 1$. For $n\leq1$ the statistic is undefined. It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than [[St000159]], the number of distinct parts of the partition.
Matching statistic: St000460
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000460: Integer partitions ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 70%
Values
[1] => [[1],[]]
=> []
=> ?
=> ? = 0
[1,1] => [[1,1],[]]
=> []
=> ?
=> ? ∊ {0,1}
[2] => [[2],[]]
=> []
=> ?
=> ? ∊ {0,1}
[1,1,1] => [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[1,2] => [[2,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[2,1] => [[2,2],[1]]
=> [1]
=> []
=> ? ∊ {0,0,1,2}
[3] => [[3],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2,3}
[1,1,2] => [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2,3}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,1,1,1,2,3}
[1,3] => [[3,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2,3}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[2,2] => [[3,2],[1]]
=> [1]
=> []
=> ? ∊ {0,0,1,1,1,2,3}
[3,1] => [[3,3],[2]]
=> [2]
=> []
=> ? ∊ {0,0,1,1,1,2,3}
[4] => [[4],[]]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2,3}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,1,3] => [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,4] => [[4,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[2,3] => [[4,2],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[3,2] => [[4,3],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[4,1] => [[4,4],[3]]
=> [3]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[5] => [[5],[]]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,2,2,2,3,4}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,4] => [[4,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,5] => [[5,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 1
[2,4] => [[5,2],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 1
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[3,3] => [[5,3],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[4,2] => [[5,4],[3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[5,1] => [[5,5],[4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[6] => [[6],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,5}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,1,4] => [[4,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,6}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 3
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> 3
[2,1,1,3] => [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> 4
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> 2
[2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> 1
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 3
[2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St001630
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
St001630: Lattices ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 20%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 0
[1,1] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[1,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[2,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[3] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[1,1,1,1] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,1,2] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[2,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[2,2] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[3,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[4] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,1,1,1,1] => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,3] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,2,2] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,4] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,2,1] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[3,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[3,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[4,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[5] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,4] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,5] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1,1] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,1,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1,2,1,1,1] => [4,1,3] => [[6,4,4],[3,3]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1,2,2,1] => [4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,1,1,2] => [3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,2,2,1,1] => [3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[1,1,1,2,2,2] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,3,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,1,1,2] => [2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[1,1,2,1,1,2,1] => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,1,2,1,1,3] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2,1,1,1] => [2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[1,1,2,2,1,2] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,2,2,1] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,3,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,1,1,1,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,2,1,1,2,2] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,1,1,3,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1,1,1] => [1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1,2] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,2,2,2,1,1] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,3,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,1,1,2,1,1] => [1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[2,1,1,1,2,2] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,1,1,1] => [1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[2,1,1,3,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,2,2,1,1] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,1,1,2] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,2,1,1,2,1] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,1,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,2,1,1,1] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[3,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2,2,1,1] => [4,2,2] => [[6,5,4],[4,3]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001875
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
St001875: Lattices ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 40%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 0
[1,1] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[1,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[2,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[3] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[1,1,1,1] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,1,2] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[2,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[2,2] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[3,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[4] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,1,1,1,1] => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,3] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,2,2] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,4] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,2,1] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[3,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[3,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[4,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[5] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,4] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,5] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
[1,2,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1,1] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,2,1,1,1] => [4,1,3] => [[6,4,4],[3,3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,2,2,1] => [4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,2,1,1,2] => [3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,1,2,2,1,1] => [3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,2,2,2] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,3,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,2,1,1,1,2] => [2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,1,2,1,1,2,1] => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,1,2,1,1,3] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,1,1,1] => [2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,2,2,1,2] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,2,2,2,1] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,3,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,3,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,1,1,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,2,1,1,2,2] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,1,3,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1,1,1] => [1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1,2] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,2,2,2,1,1] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,3,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,3,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,1,1,2,1,1] => [1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[2,1,1,1,2,2] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,1,2,1,1,1] => [1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,1,2,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[2,1,1,3,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,2,2,1,1] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1,1,2] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,2,1,1,2,1] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,2,1,1,1] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[3,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[3,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1,2,2,1,1] => [4,2,2] => [[6,5,4],[4,3]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
Description
The number of simple modules with projective dimension at most 1.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
St001878: Lattices ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 20%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 0
[1,1] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,1}
[2] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
[1,1,1] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[1,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[2,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[3] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,2}
[1,1,1,1] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,1,2] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[2,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[2,2] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[3,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[4] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,2,3}
[1,1,1,1,1] => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,3] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,2,2] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,4] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,2,1] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[2,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[3,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[3,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[4,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[5] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,4] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,5] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1,1] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,1,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1,2,1,1,1] => [4,1,3] => [[6,4,4],[3,3]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1,2,2,1] => [4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,2,1,1,2] => [3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,2,2,1,1] => [3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[1,1,1,2,2,2] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,3,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,1,1,1,2] => [2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[1,1,2,1,1,2,1] => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,2,1,1,3] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2,1,1,1] => [2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[1,1,2,2,1,2] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,2,2,2,1] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,3,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,3,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,1,1,1,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,2,1,1,2,2] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,1,1,3,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1,1,1] => [1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,2,1,1,2] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,2,2,2,1,1] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,3,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,1,1,2,1,1] => [1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[2,1,1,1,2,2] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,1,1,1] => [1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,1,3,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,2,2,1,1] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,1,1,2] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,2,1,1,2,1] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,1,1,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,2,2,1,1,1] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[3,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2,2,1,1] => [4,2,2] => [[6,5,4],[4,3]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000782
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 10% values known / values provided: 12%distinct values known / distinct values provided: 10%
Values
[1] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,1] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? ∊ {0,1}
[2] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {0,1}
[1,1,1] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1
[1,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,2}
[2,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,2}
[3] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {0,0,2}
[1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> ? ∊ {0,0,1,2,3}
[1,1,2] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,1,2,3}
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[2,2] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? ∊ {0,0,1,2,3}
[3,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,1,2,3}
[4] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {0,0,1,2,3}
[1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[1,1,3] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[4,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[5] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {0,0,0,2,2,2,2,2,3,4}
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,4] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[2,2,2] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1
[2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[3,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,3] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[4,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[5,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[6] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5}
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,1,1,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,1,2,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,1,2,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,6}
[1,1,5] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,1,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,3] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3,3,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[4,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[4,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,1,6] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,5] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,6,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,1,5] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,4] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[2,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,1,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,3,2] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[3,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
Description
The indicator function of whether a given perfect matching is an L & P matching. An L&P matching is built inductively as follows: starting with either a single edge, or a hairpin $([1,3],[2,4])$, insert a noncrossing matching or inflate an edge by a ladder, that is, a number of nested edges. The number of L&P matchings is (see [thm. 1, 2]) $$\frac{1}{2} \cdot 4^{n} + \frac{1}{n + 1}{2 \, n \choose n} - {2 \, n + 1 \choose n} + {2 \, n - 1 \choose n - 1}$$
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 60%
Values
[1] => [[1],[]]
=> []
=> []
=> ? = 0
[1,1] => [[1,1],[]]
=> []
=> []
=> ? ∊ {0,1}
[2] => [[2],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,1,1] => [[1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,2}
[1,2] => [[2,1],[]]
=> []
=> []
=> ? ∊ {0,0,2}
[2,1] => [[2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[3] => [[3],[]]
=> []
=> []
=> ? ∊ {0,0,2}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,1,3}
[1,1,2] => [[2,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,1,3}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,3] => [[3,1],[]]
=> []
=> []
=> ? ∊ {0,0,1,3}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,2] => [[3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[3,1] => [[3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[4] => [[4],[]]
=> []
=> []
=> ? ∊ {0,0,1,3}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,2,2,4}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,2,2,4}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,3] => [[3,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,2,2,4}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,4] => [[4,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,2,2,4}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0,0,2,2,4}
[2,3] => [[4,2],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2] => [[4,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[4,1] => [[4,4],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[5] => [[5],[]]
=> []
=> []
=> ? ∊ {0,0,0,2,2,4}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,4] => [[4,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,5] => [[5,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[2,4] => [[5,2],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[3,3] => [[5,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[4,2] => [[5,4],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[5,1] => [[5,5],[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[6] => [[6],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,3,3,3,5}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,4] => [[4,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,4,1] => [[4,4,1,1],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,5] => [[5,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,2,4] => [[5,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[1,6] => [[6,1],[]]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,3,2] => [[5,4,2],[3,1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
[2,4,1] => [[5,5,2],[4,1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,6}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
The following 29 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001668The number of points of the poset minus the width of the poset. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000028The number of stack-sorts needed to sort a permutation. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St000117The number of centered tunnels of a Dyck path. St000454The largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St000335The difference of lower and upper interactions. St001615The number of join prime elements of a lattice. St000741The Colin de Verdière graph invariant.