searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001962
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
10 => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
010 => [2,2] => ([(1,3),(2,3)],4)
=> 1
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
100 => [1,3] => ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 1
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 1
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The proper pathwidth of a graph.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the [[St000482|zero forcing number]] $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St000741
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000741: Graphs ⟶ ℤResult quality: 84% ●values known / values provided: 84%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000741: Graphs ⟶ ℤResult quality: 84% ●values known / values provided: 84%●distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> ([],1)
=> 0
1 => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> ([],1)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
10 => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> ([],1)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
010 => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2}
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
100 => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2}
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> ([],1)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,3}
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
0100 => [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,3}
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,3}
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> ([],1)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
01000 => [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The Colin de Verdière graph invariant.
Matching statistic: St001644
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
10 => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
010 => [2,2] => ([(1,3),(2,3)],4)
=> 1
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
100 => [1,3] => ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3}
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 1
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3}
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 1
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St000771
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 83%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 83%
Values
0 => [2] => ([],2)
=> ? = 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> ? ∊ {0,1}
01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
10 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1}
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> ? ∊ {0,1,2,2}
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,2,2}
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
100 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,2,2}
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,2,2}
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01000 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001060
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00224: Binary words —runsort⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 50%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 50%
Values
0 => 0 => [1] => ([],1)
=> ? ∊ {0,1}
1 => 1 => [1] => ([],1)
=> ? ∊ {0,1}
00 => 00 => [2] => ([],2)
=> ? ∊ {0,1,1,2}
01 => 01 => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2}
10 => 01 => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2}
11 => 11 => [2] => ([],2)
=> ? ∊ {0,1,1,2}
000 => 000 => [3] => ([],3)
=> ? ∊ {0,1,1,2,3}
001 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
010 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
011 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,3}
100 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
101 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,3}
110 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,3}
111 => 111 => [3] => ([],3)
=> ? ∊ {0,1,1,2,3}
0000 => 0000 => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,4}
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
0011 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0110 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
0111 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
1001 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
1010 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
1011 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1100 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
1101 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1110 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1111 => 1111 => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,4}
00000 => 00000 => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
00011 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
00110 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
00111 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
01011 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
01101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
01111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
10001 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
10010 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
10011 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
10100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
10101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
10110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
10111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11000 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
11001 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11010 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11011 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11100 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11101 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11110 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11111 => 11111 => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000454
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00318: Graphs —dual on components⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00318: Graphs —dual on components⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1
10 => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
010 => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
100 => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
0100 => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01000 => [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10000 => [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001232
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 1
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2}
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2}
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2}
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2}
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001875
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 23% ●values known / values provided: 23%●distinct values known / distinct values provided: 33%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 23% ●values known / values provided: 23%●distinct values known / distinct values provided: 33%
Values
0 => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,1}
1 => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,1}
00 => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,1,1,2}
01 => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,1,1,2}
10 => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2}
11 => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2}
000 => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
001 => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
010 => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
011 => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
100 => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
101 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
110 => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
0000 => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0001 => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0010 => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0100 => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1000 => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1010 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1100 => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
00000 => [6] => [[6],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00001 => [5,1] => [[5,5],[4]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00010 => [4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00100 => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01000 => [2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10000 => [1,5] => [[5,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10001 => [1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10010 => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10100 => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
10110 => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11000 => [1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11001 => [1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11010 => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
11011 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
11100 => [1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11110 => [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001879
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 50%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
1 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
00 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
01 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
10 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
11 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
000 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
001 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,3}
010 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
011 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,1,1,3}
100 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,1,1,3}
101 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
110 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,3}
111 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
0000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0011 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0100 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0111 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1000 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
1011 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1100 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1110 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1111 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
00000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
00001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00011 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00111 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01000 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01111 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10111 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11000 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11010 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11011 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11100 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11101 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11110 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11111 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St000264
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 17%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 17%
Values
0 => [1] => [1] => ([],1)
=> ? ∊ {0,1}
1 => [1] => [1] => ([],1)
=> ? ∊ {0,1}
00 => [2] => [1] => ([],1)
=> ? ∊ {0,1,1,2}
01 => [1,1] => [2] => ([],2)
=> ? ∊ {0,1,1,2}
10 => [1,1] => [2] => ([],2)
=> ? ∊ {0,1,1,2}
11 => [2] => [1] => ([],1)
=> ? ∊ {0,1,1,2}
000 => [3] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
001 => [2,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
010 => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,1,1,2,2,2,2,3}
011 => [1,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
100 => [1,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
101 => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,1,1,2,2,2,2,3}
110 => [2,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
111 => [3] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
0000 => [4] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0001 => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0010 => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0011 => [2,2] => [2] => ([],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0100 => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0101 => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0110 => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
0111 => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1000 => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1001 => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
1010 => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1011 => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1100 => [2,2] => [2] => ([],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1101 => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1110 => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1111 => [4] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
00000 => [5] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00001 => [4,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00010 => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00011 => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00100 => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
00101 => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00110 => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00111 => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01000 => [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01001 => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
01010 => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01011 => [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01100 => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01101 => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
01110 => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
01111 => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10000 => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10001 => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
10010 => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
10011 => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10100 => [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10101 => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10110 => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
10111 => [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11000 => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11001 => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11010 => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11011 => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
11100 => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11101 => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!