Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001962: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
10 => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
010 => [2,2] => ([(1,3),(2,3)],4)
=> 1
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
100 => [1,3] => ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 1
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 1
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The proper pathwidth of a graph. The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the [[St000482|zero forcing number]] $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$. The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy $$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$ Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St000741
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000741: Graphs ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> ([],1)
=> 0
1 => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> ([],1)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
10 => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> ([],1)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
010 => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2}
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
100 => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2}
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> ([],1)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,3}
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
0100 => [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,3}
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,3}
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> ([],1)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
01000 => [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,4}
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The Colin de Verdière graph invariant.
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001644: Graphs ⟶ ℤResult quality: 81% values known / values provided: 81%distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
10 => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
010 => [2,2] => ([(1,3),(2,3)],4)
=> 1
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
100 => [1,3] => ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3}
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 1
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3}
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 1
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4}
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The dimension of a graph. The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000771: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 83%
Values
0 => [2] => ([],2)
=> ? = 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> ? ∊ {0,1}
01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
10 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1}
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> ? ∊ {0,1,2,2}
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,2,2}
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
100 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,2,2}
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,2,2}
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3}
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01000 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
10000 => [1,5] => ([(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4}
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00224: Binary words runsortBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001060: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 50%
Values
0 => 0 => [1] => ([],1)
=> ? ∊ {0,1}
1 => 1 => [1] => ([],1)
=> ? ∊ {0,1}
00 => 00 => [2] => ([],2)
=> ? ∊ {0,1,1,2}
01 => 01 => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2}
10 => 01 => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2}
11 => 11 => [2] => ([],2)
=> ? ∊ {0,1,1,2}
000 => 000 => [3] => ([],3)
=> ? ∊ {0,1,1,2,3}
001 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
010 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
011 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,3}
100 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
101 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,3}
110 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,3}
111 => 111 => [3] => ([],3)
=> ? ∊ {0,1,1,2,3}
0000 => 0000 => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,4}
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
0011 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0110 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
0111 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
1001 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
1010 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
1011 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1100 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
1101 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1110 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,4}
1111 => 1111 => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,4}
00000 => 00000 => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
00011 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
00110 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
00111 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
01011 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
01101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
01111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
10001 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
10010 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
10011 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
10100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
10101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
10110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
10111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11000 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
11001 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11010 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11011 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11100 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11101 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11110 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
11111 => 11111 => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,5}
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00318: Graphs dual on componentsGraphs
St000454: Graphs ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1
10 => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
000 => [4] => ([],4)
=> ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
010 => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
100 => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2}
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0000 => [5] => ([],5)
=> ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
0100 => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3
1000 => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,3,3}
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00000 => [6] => ([],6)
=> ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01000 => [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10000 => [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001232
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 1
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2}
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2}
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2}
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2}
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3}
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4}
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001875
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
St001875: Lattices ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 33%
Values
0 => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,1}
1 => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,1}
00 => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,1,1,2}
01 => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,1,1,2}
10 => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2}
11 => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2}
000 => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
001 => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
010 => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
011 => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
100 => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
101 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
110 => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
0000 => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0001 => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0010 => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0100 => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1000 => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1010 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1100 => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
00000 => [6] => [[6],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00001 => [5,1] => [[5,5],[4]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00010 => [4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00100 => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01000 => [2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10000 => [1,5] => [[5,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10001 => [1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10010 => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
10100 => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
10110 => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11000 => [1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11001 => [1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11010 => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
11011 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
11100 => [1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11110 => [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5}
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001879
Mp00097: Binary words delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St001879: Posets ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 50%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
1 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {0,1}
00 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
01 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
10 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
11 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,2}
000 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
001 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,3}
010 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
011 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,1,1,3}
100 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,1,1,3}
101 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
110 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,3}
111 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2
0000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0011 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0100 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
0111 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1000 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
1011 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1100 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1110 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,4}
1111 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
00000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
00001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00011 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
00111 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01000 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
01111 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
10111 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11000 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11010 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11011 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11100 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11101 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11110 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
11111 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000264: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 17%
Values
0 => [1] => [1] => ([],1)
=> ? ∊ {0,1}
1 => [1] => [1] => ([],1)
=> ? ∊ {0,1}
00 => [2] => [1] => ([],1)
=> ? ∊ {0,1,1,2}
01 => [1,1] => [2] => ([],2)
=> ? ∊ {0,1,1,2}
10 => [1,1] => [2] => ([],2)
=> ? ∊ {0,1,1,2}
11 => [2] => [1] => ([],1)
=> ? ∊ {0,1,1,2}
000 => [3] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
001 => [2,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
010 => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,1,1,2,2,2,2,3}
011 => [1,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
100 => [1,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
101 => [1,1,1] => [3] => ([],3)
=> ? ∊ {0,1,1,2,2,2,2,3}
110 => [2,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,3}
111 => [3] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,3}
0000 => [4] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0001 => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0010 => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0011 => [2,2] => [2] => ([],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0100 => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0101 => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
0110 => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
0111 => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1000 => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1001 => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
1010 => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1011 => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1100 => [2,2] => [2] => ([],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1101 => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1110 => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
1111 => [4] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,3,4}
00000 => [5] => [1] => ([],1)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00001 => [4,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00010 => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00011 => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00100 => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
00101 => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00110 => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
00111 => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01000 => [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01001 => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
01010 => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01011 => [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01100 => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
01101 => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
01110 => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
01111 => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10000 => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10001 => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
10010 => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
10011 => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10100 => [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10101 => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
10110 => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
10111 => [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11000 => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11001 => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11010 => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11011 => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
11100 => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
11101 => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5}
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001330The hat guessing number of a graph. St001118The acyclic chromatic index of a graph.