searching the database
Your data matches 132 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000010
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 1
([],2)
=> [1,1]
=> 2
([(0,1)],2)
=> [2]
=> 1
([],3)
=> [1,1,1]
=> 3
([(1,2)],3)
=> [2,1]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> [1,1,1,1]
=> 4
([(2,3)],4)
=> [2,1,1]
=> 3
([(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([],5)
=> [1,1,1,1,1]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The length of the partition.
Matching statistic: St000147
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 100%●distinct values known / distinct values provided: 89%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 100%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> []
=> []
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> []
=> 0 = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([],0)
=> []
=> ?
=> ?
=> ? = 0 - 1
Description
The largest part of an integer partition.
Matching statistic: St000378
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 100%●distinct values known / distinct values provided: 89%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 100%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> []
=> []
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> []
=> 0 = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [3]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> 0 = 1 - 1
([],0)
=> []
=> ?
=> ?
=> ? = 0 - 1
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells c in the diagram of an integer partition λ for which arm(c)−leg(c)∈{0,1}.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000806
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St000806: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 100%●distinct values known / distinct values provided: 89%
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St000806: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 100%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> 1 => [1,1] => 3 = 1 + 2
([],2)
=> [1,1]
=> 11 => [1,1,1] => 4 = 2 + 2
([(0,1)],2)
=> [2]
=> 0 => [2] => 3 = 1 + 2
([],3)
=> [1,1,1]
=> 111 => [1,1,1,1] => 5 = 3 + 2
([(1,2)],3)
=> [2,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,2),(1,2)],3)
=> [3]
=> 1 => [1,1] => 3 = 1 + 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => [1,1] => 3 = 1 + 2
([],4)
=> [1,1,1,1]
=> 1111 => [1,1,1,1,1] => 6 = 4 + 2
([(2,3)],4)
=> [2,1,1]
=> 011 => [2,1,1] => 5 = 3 + 2
([(1,3),(2,3)],4)
=> [3,1]
=> 11 => [1,1,1] => 4 = 2 + 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 0 => [2] => 3 = 1 + 2
([(0,3),(1,2)],4)
=> [2,2]
=> 00 => [3] => 4 = 2 + 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> 0 => [2] => 3 = 1 + 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 11 => [1,1,1] => 4 = 2 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => [2] => 3 = 1 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 0 => [2] => 3 = 1 + 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => [2] => 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => [2] => 3 = 1 + 2
([],5)
=> [1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => 7 = 5 + 2
([(3,4)],5)
=> [2,1,1,1]
=> 0111 => [2,1,1,1] => 6 = 4 + 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> 111 => [1,1,1,1] => 5 = 3 + 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> 001 => [3,1] => 5 = 3 + 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10 => [1,2] => 4 = 2 + 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 111 => [1,1,1,1] => 5 = 3 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10 => [1,2] => 4 = 2 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 01 => [2,1] => 4 = 2 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1 => [1,1] => 3 = 1 + 2
([],0)
=> []
=> ? => ? => ? = 0 + 2
Description
The semiperimeter of the associated bargraph.
Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the semiperimeter of the polygon determined by the axis and the bargraph. Put differently, it is the sum of the number of up steps and the number of horizontal steps when regarding the bargraph as a path with up, horizontal and down steps.
Matching statistic: St000733
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [[1],[2]]
=> 2
([(0,1)],2)
=> [2]
=> [[1,2]]
=> 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([],0)
=> []
=> []
=> ? = 0
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ? = 3
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? = 3
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15]]
=> ? = 2
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? = 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? = 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? = 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? = 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? = 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? = 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? = 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? = 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]]
=> ? = 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? = 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> ? = 4
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? = 4
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ? = 5
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? = 4
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ? = 4
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 3
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ? = 3
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? = 3
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 4
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ? = 4
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? = 4
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? = 3
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 4
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? = 4
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ? = 5
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? = 3
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ? = 3
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? = 4
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? = 4
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? = 3
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? = 3
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? = 1
([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? = 1
([(0,3),(0,4),(0,5),(0,7),(0,8),(0,9),(0,10),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,5),(2,6),(2,7),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000007
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> [1] => 1
([],2)
=> [1,1]
=> [[1],[2]]
=> [2,1] => 2
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [1,2] => 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 2
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 3
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ? => ? = 3
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 3
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15]]
=> ? => ? = 2
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? => ? = 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [1,2,3,4,5,6,7,8,9,10,11,12] => ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? => ? = 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [1,2,3,4,5,6,7,8,9,10,11,12] => ? = 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? => ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? => ? = 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? => ? = 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]]
=> ? => ? = 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [1,2,3,4,5,6,7,8,9,10,11,12] => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> ? => ? = 4
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 4
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ? => ? = 5
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 4
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ? => ? = 4
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 3
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ? => ? = 3
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 3
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 4
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ? => ? = 4
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 4
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 6
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 3
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 4
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 4
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ? => ? = 5
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 3
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ? => ? = 3
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 4
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 4
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 3
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 3
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? => ? = 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [1,2,3,4,5,6,7,8,9,10,11,12] => ? = 1
Description
The number of saliances of the permutation.
A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern ([1],(1,1)), i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St000288
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> 10 => 01 => 1
([],2)
=> [1,1]
=> 110 => 101 => 2
([(0,1)],2)
=> [2]
=> 100 => 001 => 1
([],3)
=> [1,1,1]
=> 1110 => 1101 => 3
([(1,2)],3)
=> [2,1]
=> 1010 => 0101 => 2
([(0,2),(1,2)],3)
=> [3]
=> 1000 => 0001 => 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 0001 => 1
([],4)
=> [1,1,1,1]
=> 11110 => 11101 => 4
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01101 => 3
([(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 00101 => 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 10000 => 00001 => 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 1001 => 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> 10000 => 00001 => 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 00101 => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 00001 => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 10000 => 00001 => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 00001 => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 00001 => 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 111101 => 5
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011101 => 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 001101 => 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 000101 => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 10101 => 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 100010 => 000101 => 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 01001 => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 001101 => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 000101 => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 100010 => 000101 => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 000101 => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 01001 => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 000101 => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 100000 => 000001 => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 1
([],0)
=> []
=> => ? => ? = 0
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> 10000000000000110 => ? => ? = 3
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 3
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> 1000000000000010 => ? => ? = 2
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> 10000000000000000 => ? => ? = 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> 1000000000000000 => ? => ? = 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> 100000000000000 => ? => ? = 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> 100000000000000 => ? => ? = 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> 10000000000000000 => ? => ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? => ? = 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> 10000000000000 => ? => ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> 1000000000000000 => ? => ? = 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> 100000000000 => ? => ? = 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> 1000000000000000 => ? => ? = 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> 10000000000000 => ? => ? = 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> 100000000000 => ? => ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> 100000000000000 => ? => ? = 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> 100000000000 => ? => ? = 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> 10000000000000 => ? => ? = 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> 100000000000000 => ? => ? = 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> 100000000000000 => ? => ? = 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> 100000000000000000 => ? => ? = 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> 100000000000000 => ? => ? = 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> 10000000000000 => ? => ? = 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> 1000000001110 => ? => ? = 4
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 4
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> 1000000000011110 => ? => ? = 5
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 4
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> 10000000000001110 => ? => ? = 4
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> 100000000110 => ? => ? = 3
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> 10000000000110 => ? => ? = 3
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 3
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => ? => ? = 4
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> 1000000000001110 => ? => ? = 4
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 4
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 3
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => ? => ? = 4
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 4
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> 100000000011110 => ? => ? = 5
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 3
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> 100000000000000110 => ? => ? = 3
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 4
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 4
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 3
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 3
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> 10000000000000000 => ? => ? = 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 1
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000507
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000507: Standard tableaux ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000507: Standard tableaux ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 2
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 3
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ?
=> ? = 3
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ?
=> ? = 3
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15]]
=> ?
=> ? = 2
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ?
=> ? = 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ?
=> ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]]
=> ?
=> ? = 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 4
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 4
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ?
=> ? = 5
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 4
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ?
=> ? = 4
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 3
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ?
=> ? = 3
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ?
=> ? = 3
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 4
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ?
=> ? = 4
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 4
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 6
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ?
=> ? = 3
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 4
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 4
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ?
=> ? = 5
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ?
=> ? = 3
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ?
=> ? = 3
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 4
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 4
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ?
=> ? = 3
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ?
=> ? = 3
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
Description
The number of ascents of a standard tableau.
Entry i of a standard Young tableau is an '''ascent''' if i+1 appears to the right or above i in the tableau (with respect to the English notation for tableaux).
Matching statistic: St000734
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> [1]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2
([(0,1)],2)
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1
([],3)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([],4)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 3
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([],0)
=> []
=> []
=> []
=> ? = 0
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16]]
=> ? = 3
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 3
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 2
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16]]
=> ? = 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17]]
=> ? = 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 4
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 4
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 5
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 4
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16]]
=> ? = 4
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 3
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 3
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 3
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 4
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 4
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 4
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 3
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 4
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 4
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 5
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 3
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17]]
=> ? = 3
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? = 4
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 4
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]]
=> ? = 3
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 3
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16]]
=> ? = 1
Description
The last entry in the first row of a standard tableau.
Matching statistic: St001777
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St001777: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St001777: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 97%●distinct values known / distinct values provided: 89%
Values
([],1)
=> [1]
=> [[1]]
=> [1] => 0 = 1 - 1
([],2)
=> [1,1]
=> [[1],[2]]
=> [1,1] => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [2] => 0 = 1 - 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [2,1] => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [3] => 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [3] => 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [3,1] => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [4] => 0 = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [4] => 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [3,1] => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [4] => 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [4] => 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [4] => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [4] => 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [5] => 0 = 1 - 1
([],0)
=> []
=> []
=> [0] => ? = 0 - 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ? => ? = 3 - 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 3 - 1
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15]]
=> ? => ? = 2 - 1
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? => ? = 1 - 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12] => ? = 1 - 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? => ? = 1 - 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12] => ? = 1 - 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1 - 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1 - 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? => ? = 1 - 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1 - 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? => ? = 1 - 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1 - 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1 - 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 1 - 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1 - 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]]
=> ? => ? = 1 - 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? => ? = 1 - 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? => ? = 1 - 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12] => ? = 1 - 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> ? => ? = 4 - 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 4 - 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ? => ? = 5 - 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 4 - 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ? => ? = 4 - 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 3 - 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ? => ? = 3 - 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 3 - 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 4 - 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ? => ? = 4 - 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 4 - 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 6 - 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 3 - 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 4 - 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 4 - 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ? => ? = 5 - 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 3 - 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ? => ? = 3 - 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 4 - 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 4 - 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 3 - 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 3 - 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? => ? = 1 - 1
Description
The number of weak descents in an integer composition.
A weak descent of an integer composition α=(a1,…,an) is an index 1≤i<n such that ai≥ai+1.
The following 122 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000382The first part of an integer composition. St000297The number of leading ones in a binary word. St000326The position of the first one in a binary word after appending a 1 at the end. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St001372The length of a longest cyclic run of ones of a binary word. St001462The number of factors of a standard tableaux under concatenation. St000439The position of the first down step of a Dyck path. St000011The number of touch points (or returns) of a Dyck path. St000383The last part of an integer composition. St000925The number of topologically connected components of a set partition. St001176The size of a partition minus its first part. St000617The number of global maxima of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000676The number of odd rises of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St000053The number of valleys of the Dyck path. St000809The reduced reflection length of the permutation. St001733The number of weak left to right maxima of a Dyck path. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St000105The number of blocks in the set partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000544The cop number of a graph. St001363The Euler characteristic of a graph according to Knill. St000363The number of minimal vertex covers of a graph. St000273The domination number of a graph. St000916The packing number of a graph. St001829The common independence number of a graph. St001316The domatic number of a graph. St000287The number of connected components of a graph. St001828The Euler characteristic of a graph. St000157The number of descents of a standard tableau. St000286The number of connected components of the complement of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St000553The number of blocks of a graph. St000470The number of runs in a permutation. St000542The number of left-to-right-minima of a permutation. St001489The maximum of the number of descents and the number of inverse descents. St000354The number of recoils of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000831The number of indices that are either descents or recoils. St001061The number of indices that are both descents and recoils of a permutation. St000456The monochromatic index of a connected graph. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000519The largest length of a factor maximising the subword complexity. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001330The hat guessing number of a graph. St001545The second Elser number of a connected graph. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St000989The number of final rises of a permutation. St000015The number of peaks of a Dyck path. St000155The number of exceedances (also excedences) of a permutation. St000331The number of upper interactions of a Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000216The absolute length of a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000653The last descent of a permutation. St001480The number of simple summands of the module J^2/J^3. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000654The first descent of a permutation. St001201The grade of the simple module S0 in the special CNakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001481The minimal height of a peak of a Dyck path. St000090The variation of a composition. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001812The biclique partition number of a graph. St000006The dinv of a Dyck path. St000264The girth of a graph, which is not a tree. St001250The number of parts of a partition that are not congruent 0 modulo 3. St000993The multiplicity of the largest part of an integer partition. St001152The number of pairs with even minimum in a perfect matching. St001118The acyclic chromatic index of a graph. St000618The number of self-evacuating tableaux of given shape. St001432The order dimension of the partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001060The distinguishing index of a graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!