searching the database
Your data matches 63 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000050
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
St000050: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> 1
[.,[.,.]]
=> 2
[[.,.],.]
=> 2
[.,[.,[.,.]]]
=> 3
[.,[[.,.],.]]
=> 3
[[.,.],[.,.]]
=> 2
[[.,[.,.]],.]
=> 3
[[[.,.],.],.]
=> 3
[.,[.,[.,[.,.]]]]
=> 4
[.,[.,[[.,.],.]]]
=> 4
[.,[[.,.],[.,.]]]
=> 3
[.,[[.,[.,.]],.]]
=> 4
[.,[[[.,.],.],.]]
=> 4
[[.,.],[.,[.,.]]]
=> 3
[[.,.],[[.,.],.]]
=> 3
[[.,[.,.]],[.,.]]
=> 3
[[[.,.],.],[.,.]]
=> 3
[[.,[.,[.,.]]],.]
=> 4
[[.,[[.,.],.]],.]
=> 4
[[[.,.],[.,.]],.]
=> 3
[[[.,[.,.]],.],.]
=> 4
[[[[.,.],.],.],.]
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> 5
[.,[.,[.,[[.,.],.]]]]
=> 5
[.,[.,[[.,.],[.,.]]]]
=> 4
[.,[.,[[.,[.,.]],.]]]
=> 5
[.,[.,[[[.,.],.],.]]]
=> 5
[.,[[.,.],[.,[.,.]]]]
=> 4
[.,[[.,.],[[.,.],.]]]
=> 4
[.,[[.,[.,.]],[.,.]]]
=> 4
[.,[[[.,.],.],[.,.]]]
=> 4
[.,[[.,[.,[.,.]]],.]]
=> 5
[.,[[.,[[.,.],.]],.]]
=> 5
[.,[[[.,.],[.,.]],.]]
=> 4
[.,[[[.,[.,.]],.],.]]
=> 5
[.,[[[[.,.],.],.],.]]
=> 5
[[.,.],[.,[.,[.,.]]]]
=> 4
[[.,.],[.,[[.,.],.]]]
=> 4
[[.,.],[[.,.],[.,.]]]
=> 3
[[.,.],[[.,[.,.]],.]]
=> 4
[[.,.],[[[.,.],.],.]]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> 3
[[.,[.,.]],[[.,.],.]]
=> 3
[[[.,.],.],[.,[.,.]]]
=> 3
[[[.,.],.],[[.,.],.]]
=> 3
[[.,[.,[.,.]]],[.,.]]
=> 4
[[.,[[.,.],.]],[.,.]]
=> 4
[[[.,.],[.,.]],[.,.]]
=> 3
[[[.,[.,.]],.],[.,.]]
=> 4
[[[[.,.],.],.],[.,.]]
=> 4
Description
The depth or height of a binary tree.
The depth (or height) of a binary tree is the maximal depth (or height) of one of its vertices.
The '''height''' of a vertex is the number of edges on the longest path between that node and a leaf. The '''depth''' of a vertex is the number of edges from the vertex to the root.
See [1] and [2] for this terminology.
The depth (or height) of a tree $T$ can be recursively defined: $\operatorname{depth}(T) = 0$ if $T$ is empty and
$$\operatorname{depth}(T) = 1 + max(\operatorname{depth}(L),\operatorname{depth}(R))$$
if $T$ is nonempty with left and right subtrees $L$ and $R$, respectively.
The upper and lower bounds on the depth of a binary tree $T$ of size $n$ are $log_2(n) \leq \operatorname{depth}(T) \leq n$.
Matching statistic: St001720
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ([(0,7),(4,5),(5,3),(6,1),(6,2),(7,4),(7,6)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ([(0,7),(4,5),(5,3),(6,1),(6,2),(7,4),(7,6)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ([(0,7),(5,3),(5,4),(6,1),(6,2),(7,5),(7,6)],8)
=> ?
=> ? = 4
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ([(0,7),(4,5),(5,3),(6,1),(6,2),(7,4),(7,6)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ([(0,7),(4,5),(5,3),(6,1),(6,2),(7,4),(7,6)],8)
=> ?
=> ? = 5
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ([(0,7),(4,2),(5,3),(6,1),(6,5),(7,4),(7,6)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ([(0,7),(4,3),(5,6),(6,1),(6,2),(7,4),(7,5)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ([(0,7),(5,2),(5,6),(6,3),(6,4),(7,1),(7,5)],8)
=> ?
=> ? = 5
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ([(0,7),(4,5),(5,6),(6,2),(6,3),(7,1),(7,4)],8)
=> ?
=> ? = 6
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ([(0,5),(4,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ?
=> ? = 6
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ?
=> ? = 7
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ?
=> ? = 7
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ([(0,6),(3,4),(4,1),(5,2),(6,7),(7,3),(7,5)],8)
=> ?
=> ? = 6
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ([(0,5),(4,3),(5,6),(6,2),(6,7),(7,1),(7,4)],8)
=> ?
=> ? = 6
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ?
=> ? = 7
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ([(0,3),(0,6),(4,5),(5,7),(6,4),(7,1),(7,2)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ([(0,3),(0,6),(4,7),(5,2),(6,4),(7,1),(7,5)],8)
=> ?
=> ? = 6
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(4,1),(5,6),(6,2),(7,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ([(0,4),(0,7),(5,3),(6,1),(6,2),(7,5),(7,6)],8)
=> ?
=> ? = 4
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(4,1),(5,6),(6,2),(7,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(4,1),(5,6),(6,2),(7,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(4,1),(5,6),(6,2),(7,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(4,1),(5,6),(6,2),(7,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ([(0,4),(0,7),(5,6),(6,2),(6,3),(7,1),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ([(0,3),(0,6),(4,7),(5,2),(6,4),(7,1),(7,5)],8)
=> ?
=> ? = 6
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ([(0,3),(0,6),(4,2),(5,1),(6,7),(7,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ([(0,4),(0,5),(5,7),(6,2),(6,3),(7,1),(7,6)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ([(0,5),(0,6),(4,1),(5,3),(6,7),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ([(0,5),(0,6),(4,1),(5,3),(6,7),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 6
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(4,5),(5,3),(6,1),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ([(0,5),(0,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(4,5),(5,3),(6,1),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,6),(0,7),(4,3),(5,2),(6,1),(7,4),(7,5)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,6),(0,7),(4,3),(5,2),(6,1),(7,4),(7,5)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],[.,.]],[.,.]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ([(0,5),(0,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[[.,[.,.]],.],[.,.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(4,5),(5,3),(6,1),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[[[.,.],.],.],[.,.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(4,5),(5,3),(6,1),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,[[.,.],[.,.]]],.]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(5,7),(6,4)],8)
=> ([(0,5),(0,6),(4,7),(5,3),(6,4),(7,1),(7,2)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 6
[[.,[.,.]],[[[.,.],[[.,.],.]],.]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ([(0,5),(0,6),(4,1),(5,3),(6,7),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ([(0,5),(0,6),(4,1),(5,3),(6,7),(7,2),(7,4)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[[[[.,.],.],.],.],.]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 6
[[.,[.,[.,.]]],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,6),(2,7),(3,7),(4,3),(5,4),(6,2)],8)
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? = 5
[[.,[.,[.,.]]],[.,[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,7),(5,7),(6,4)],8)
=> ([(0,5),(0,6),(4,1),(5,4),(6,7),(7,2),(7,3)],8)
=> ?
=> ? = 4
[[.,[.,[.,.]]],[.,[[[.,.],.],.]]]
=> ([(0,5),(1,6),(2,7),(3,7),(4,3),(5,4),(6,2)],8)
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? = 5
[[.,[.,[.,.]]],[[.,.],[.,[.,.]]]]
=> ([(0,7),(1,3),(2,4),(3,7),(4,5),(5,6),(7,6)],8)
=> ([(0,6),(0,7),(4,2),(5,3),(6,4),(7,1),(7,5)],8)
=> ?
=> ? = 4
[[.,[.,[.,.]]],[[.,.],[[.,.],.]]]
=> ([(0,7),(1,3),(2,4),(3,7),(4,5),(5,6),(7,6)],8)
=> ([(0,6),(0,7),(4,2),(5,3),(6,4),(7,1),(7,5)],8)
=> ?
=> ? = 4
[[.,[.,[.,.]]],[[[.,.],.],[.,.]]]
=> ([(0,7),(1,3),(2,4),(3,7),(4,5),(5,6),(7,6)],8)
=> ([(0,6),(0,7),(4,2),(5,3),(6,4),(7,1),(7,5)],8)
=> ?
=> ? = 4
Description
The minimal length of a chain of small intervals in a lattice.
An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
Matching statistic: St000147
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 2
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 2
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ? = 4
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ? = 6
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 6
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 6
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 4
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ? = 5
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 6
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4
Description
The largest part of an integer partition.
Matching statistic: St000384
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000384: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000384: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 2
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 2
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ? = 4
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ? = 6
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 6
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 6
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 4
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ? = 5
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 6
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4
Description
The maximal part of the shifted composition of an integer partition.
A partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ is shifted into a composition by adding $i-1$ to the $i$-th part.
The statistic is then $\operatorname{max}_i\{ \lambda_i + i - 1 \}$.
See also [[St000380]].
Matching statistic: St000784
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 2
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 2
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ? = 4
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ? = 6
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 6
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 6
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 4
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ? = 5
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 6
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4
Description
The maximum of the length and the largest part of the integer partition.
This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1].
See also [[St001214]].
Matching statistic: St000319
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> 0 = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2 = 3 - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2 = 3 - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 2 = 3 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 2 = 3 - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ? = 4 - 1
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5 - 1
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ? = 5 - 1
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ? = 6 - 1
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 6 - 1
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 - 1
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 6 - 1
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6 - 1
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 4 - 1
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 6 - 1
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 4 - 1
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4 - 1
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4 - 1
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> 0 = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2 = 3 - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2 = 3 - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 2 = 3 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 2 = 3 - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 3 = 4 - 1
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ? = 4 - 1
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 - 1
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5 - 1
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ? = 5 - 1
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5 - 1
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ? = 6 - 1
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 6 - 1
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 - 1
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 6 - 1
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6 - 1
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 4 - 1
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6 - 1
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ? = 5 - 1
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 - 1
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 6 - 1
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 4 - 1
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5 - 1
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4 - 1
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4 - 1
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000380
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000380: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000380: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> 2 = 1 + 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 3 = 2 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 3 = 2 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 4 = 3 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 4 = 3 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 3 = 2 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 4 = 3 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 4 = 3 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 4 = 3 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 4 = 3 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 4 = 3 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 4 = 3 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 4 = 3 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 4 = 3 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 5 = 4 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 6 = 5 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 4 = 3 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 4 = 3 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 4 = 3 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 4 = 3 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 4 = 3 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 4 = 3 + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 5 = 4 + 1
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 + 1
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 + 1
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ? = 4 + 1
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 + 1
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 5 + 1
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5 + 1
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ? = 5 + 1
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ? = 5 + 1
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ? = 6 + 1
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 6 + 1
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 + 1
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 + 1
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 1
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 + 1
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 6 + 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 + 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 + 1
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 6 + 1
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6 + 1
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 + 1
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 + 1
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 4 + 1
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ? = 6 + 1
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ? = 6 + 1
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ? = 5 + 1
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 7 + 1
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5 + 1
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ? = 5 + 1
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 6 + 1
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5 + 1
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 4 + 1
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 5 + 1
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4 + 1
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 4 + 1
Description
Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition.
Put differently, this is the smallest number $n$ such that the partition fits into the triangular partition $(n-1,n-2,\dots,1)$.
Matching statistic: St000010
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> ([],1)
=> [1]
=> [1]
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 2
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 2
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 3
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ?
=> ? = 4
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ?
=> ? = 6
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 6
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ?
=> ? = 6
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 4
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 6
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 4
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ?
=> ? = 4
Description
The length of the partition.
Matching statistic: St000097
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(5,7),(6,7),(7,4)],8)
=> ?
=> ?
=> ? = 4
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,6),(2,4),(4,5),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 5
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,5),(3,7),(5,6),(6,7),(7,4)],8)
=> ?
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> ([(0,6),(1,6),(2,3),(3,7),(5,7),(6,5),(7,4)],8)
=> ?
=> ?
=> ? = 5
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,5),(5,6),(6,7),(7,4)],8)
=> ?
=> ?
=> ? = 5
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ?
=> ?
=> ? = 6
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 6
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ?
=> ?
=> ? = 6
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,6),(3,4),(4,7),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 4
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> ([(0,6),(1,7),(2,5),(3,4),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ?
=> ?
=> ? = 6
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ?
=> ?
=> ? = 5
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 7
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 6
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 4
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,3),(2,4),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 5
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ?
=> ? = 4
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ?
=> ? = 4
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
The following 53 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000098The chromatic number of a graph. St000734The last entry in the first row of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000676The number of odd rises of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000528The height of a poset. St001343The dimension of the reduced incidence algebra of a poset. St000093The cardinality of a maximal independent set of vertices of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001286The annihilation number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000808The number of up steps of the associated bargraph. St001494The Alon-Tarsi number of a graph. St001029The size of the core of a graph. St001116The game chromatic number of a graph. St001580The acyclic chromatic number of a graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000778The metric dimension of a graph. St000172The Grundy number of a graph. St000907The number of maximal antichains of minimal length in a poset. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001963The tree-depth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001962The proper pathwidth of a graph. St001717The largest size of an interval in a poset. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St000080The rank of the poset. St000013The height of a Dyck path. St000822The Hadwiger number of the graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001323The independence gap of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001644The dimension of a graph. St001820The size of the image of the pop stack sorting operator. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001626The number of maximal proper sublattices of a lattice. St000299The number of nonisomorphic vertex-induced subtrees. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000225Difference between largest and smallest parts in a partition. St001263The index of the maximal parabolic seaweed algebra associated with the composition. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000442The maximal area to the right of an up step of a Dyck path. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!