searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000203
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000203: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> 2 = 1 + 1
[[.,.],.]
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> 3 = 2 + 1
[.,[[.,.],.]]
=> 2 = 1 + 1
[[.,.],[.,.]]
=> 3 = 2 + 1
[[.,[.,.]],.]
=> 2 = 1 + 1
[[[.,.],.],.]
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> 4 = 3 + 1
[.,[.,[[.,.],.]]]
=> 3 = 2 + 1
[.,[[.,.],[.,.]]]
=> 3 = 2 + 1
[.,[[.,[.,.]],.]]
=> 2 = 1 + 1
[.,[[[.,.],.],.]]
=> 2 = 1 + 1
[[.,.],[.,[.,.]]]
=> 4 = 3 + 1
[[.,.],[[.,.],.]]
=> 3 = 2 + 1
[[.,[.,.]],[.,.]]
=> 3 = 2 + 1
[[[.,.],.],[.,.]]
=> 4 = 3 + 1
[[.,[.,[.,.]]],.]
=> 2 = 1 + 1
[[.,[[.,.],.]],.]
=> 2 = 1 + 1
[[[.,.],[.,.]],.]
=> 3 = 2 + 1
[[[.,[.,.]],.],.]
=> 3 = 2 + 1
[[[[.,.],.],.],.]
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> 5 = 4 + 1
[.,[.,[.,[[.,.],.]]]]
=> 4 = 3 + 1
[.,[.,[[.,.],[.,.]]]]
=> 4 = 3 + 1
[.,[.,[[.,[.,.]],.]]]
=> 3 = 2 + 1
[.,[.,[[[.,.],.],.]]]
=> 3 = 2 + 1
[.,[[.,.],[.,[.,.]]]]
=> 4 = 3 + 1
[.,[[.,.],[[.,.],.]]]
=> 3 = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> 3 = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> 3 = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> 2 = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> 2 = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> 2 = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> 2 = 1 + 1
[.,[[[[.,.],.],.],.]]
=> 2 = 1 + 1
[[.,.],[.,[.,[.,.]]]]
=> 5 = 4 + 1
[[.,.],[.,[[.,.],.]]]
=> 4 = 3 + 1
[[.,.],[[.,.],[.,.]]]
=> 4 = 3 + 1
[[.,.],[[.,[.,.]],.]]
=> 3 = 2 + 1
[[.,.],[[[.,.],.],.]]
=> 3 = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> 4 = 3 + 1
[[.,[.,.]],[[.,.],.]]
=> 3 = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> 5 = 4 + 1
[[[.,.],.],[[.,.],.]]
=> 4 = 3 + 1
[[.,[.,[.,.]]],[.,.]]
=> 3 = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> 3 = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> 4 = 3 + 1
[[[.,[.,.]],.],[.,.]]
=> 4 = 3 + 1
[[[[.,.],.],.],[.,.]]
=> 5 = 4 + 1
[[.,[.,[.,[.,.]]]],.]
=> 2 = 1 + 1
Description
The number of external nodes of a binary tree.
That is, the number of nodes that can be reached from the root by only left steps or only right steps, plus 1 for the root node itself. A counting formula for the number of external node in all binary trees of size n can be found in [1].
Matching statistic: St000056
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [2,1] => [2,1] => [1] => 1
[[.,.],.]
=> [1,2] => [1,2] => [1] => 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,1,2] => [1,2] => 2
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [2,1] => 1
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,2] => 2
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1] => 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2] => 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,1,2,3] => [1,2,3] => 3
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,3,2] => 2
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,1,3] => [2,1,3] => 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => [3,2,1] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1] => 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,2,3] => 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => [1,3,2] => 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => [2,1,3] => 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3] => 3
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,1,2,4] => [3,1,2] => 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1] => 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2] => 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3] => 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3] => 3
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,1,2,3,4] => [1,2,3,4] => 4
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,4,3] => [1,2,4,3] => 3
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,1,3,2,4] => [1,3,2,4] => 3
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,1,4,3,2] => [1,4,3,2] => 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,1,3,4,2] => [1,3,4,2] => 2
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,2,1,3,4] => [2,1,3,4] => 3
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [5,2,1,4,3] => [2,1,4,3] => 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [5,3,2,1,4] => [3,2,1,4] => 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,1,4] => [2,3,1,4] => 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,2,3,1] => [4,2,3,1] => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => [4,3,2,1] => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => [2,4,3,1] => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => [3,2,4,1] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1] => 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,2,3,4] => 4
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,5,2,4,3] => [1,2,4,3] => 3
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,5,3,2,4] => [1,3,2,4] => 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,4,3,2] => 2
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,2] => 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,3,4] => 3
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,3] => 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,3,4] => 4
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,3] => 3
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,4] => 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,4] => 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,4] => 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,4] => 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4] => 4
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3] => 1
Description
The decomposition (or block) number of a permutation.
For π∈Sn, this is given by
#{1≤k≤n:{π1,…,πk}={1,…,k}}.
This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum.
This is one plus [[St000234]].
Matching statistic: St000234
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [2,1] => [2,1] => [1] => 0 = 1 - 1
[[.,.],.]
=> [1,2] => [1,2] => [1] => 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,1,2] => [1,2] => 1 = 2 - 1
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [2,1] => 0 = 1 - 1
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,2] => 1 = 2 - 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1] => 0 = 1 - 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2] => 1 = 2 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,1,2,3] => [1,2,3] => 2 = 3 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,3,2] => 1 = 2 - 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,1,3] => [2,1,3] => 1 = 2 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => [3,2,1] => 0 = 1 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1] => 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,2,3] => 2 = 3 - 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => [1,3,2] => 1 = 2 - 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => [2,1,3] => 1 = 2 - 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3] => 2 = 3 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,1,2,4] => [3,1,2] => 0 = 1 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1] => 0 = 1 - 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2] => 1 = 2 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3] => 1 = 2 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3] => 2 = 3 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,4,3] => [1,2,4,3] => 2 = 3 - 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,1,3,2,4] => [1,3,2,4] => 2 = 3 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,1,3,4,2] => [1,3,4,2] => 1 = 2 - 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,2,1,3,4] => [2,1,3,4] => 2 = 3 - 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [5,2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [5,3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,1,4] => [2,3,1,4] => 1 = 2 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,2,3,1] => [4,2,3,1] => 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => [2,4,3,1] => 0 = 1 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => [3,2,4,1] => 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1] => 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,5,2,4,3] => [1,2,4,3] => 2 = 3 - 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,5,3,2,4] => [1,3,2,4] => 2 = 3 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,2] => 1 = 2 - 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,3,4] => 2 = 3 - 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,3] => 1 = 2 - 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,3,4] => 3 = 4 - 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,3] => 2 = 3 - 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,4] => 1 = 2 - 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,4] => 1 = 2 - 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,4] => 2 = 3 - 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,4] => 2 = 3 - 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4] => 3 = 4 - 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3] => 0 = 1 - 1
Description
The number of global ascents of a permutation.
The global ascents are the integers i such that
C(π)={i∈[n−1]∣∀1≤j≤i<k≤n:π(j)<π(k)}.
Equivalently, by the pigeonhole principle,
C(π)={i∈[n−1]∣∀1≤j≤i:π(j)≤i}.
For n>1 it can also be described as an occurrence of the mesh pattern
([1,2],{(0,2),(1,0),(1,1),(2,0),(2,1)})
or equivalently
([1,2],{(0,1),(0,2),(1,1),(1,2),(2,0)}),
see [3].
According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Values
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 1
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 1
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,.],.],.],[.,[.,.]]]
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Values
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 1
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 1 + 1
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 + 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,.],.],.],[.,[.,.]]]
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!