Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000059
Mp00042: Integer partitions initial tableauStandard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [[1]]
=> 0
[2]
=> [[1,2]]
=> 0
[1,1]
=> [[1],[2]]
=> 1
[3]
=> [[1,2,3]]
=> 0
[2,1]
=> [[1,2],[3]]
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> 3
[4]
=> [[1,2,3,4]]
=> 0
[3,1]
=> [[1,2,3],[4]]
=> 3
[2,2]
=> [[1,2],[3,4]]
=> 4
[2,1,1]
=> [[1,2],[3],[4]]
=> 5
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[5]
=> [[1,2,3,4,5]]
=> 0
[4,1]
=> [[1,2,3,4],[5]]
=> 4
[3,2]
=> [[1,2,3],[4,5]]
=> 6
[3,1,1]
=> [[1,2,3],[4],[5]]
=> 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> 8
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 9
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[6]
=> [[1,2,3,4,5,6]]
=> 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> 5
[4,2]
=> [[1,2,3,4],[5,6]]
=> 8
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 9
[3,3]
=> [[1,2,3],[4,5,6]]
=> 9
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 12
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 12
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 13
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 14
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[7]
=> [[1,2,3,4,5,6,7]]
=> 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> 6
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> 10
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 11
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> 12
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 14
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 15
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 16
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 17
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 18
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 18
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 19
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 20
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> 7
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 12
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> 13
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 15
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> 17
Description
The inversion number of a standard tableau as defined by Haglund and Stevens. Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Matching statistic: St001541
Mp00044: Integer partitions conjugateInteger partitions
St001541: Integer partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> 0
[2]
=> [1,1]
=> 0
[1,1]
=> [2]
=> 1
[3]
=> [1,1,1]
=> 0
[2,1]
=> [2,1]
=> 2
[1,1,1]
=> [3]
=> 3
[4]
=> [1,1,1,1]
=> 0
[3,1]
=> [2,1,1]
=> 3
[2,2]
=> [2,2]
=> 4
[2,1,1]
=> [3,1]
=> 5
[1,1,1,1]
=> [4]
=> 6
[5]
=> [1,1,1,1,1]
=> 0
[4,1]
=> [2,1,1,1]
=> 4
[3,2]
=> [2,2,1]
=> 6
[3,1,1]
=> [3,1,1]
=> 7
[2,2,1]
=> [3,2]
=> 8
[2,1,1,1]
=> [4,1]
=> 9
[1,1,1,1,1]
=> [5]
=> 10
[6]
=> [1,1,1,1,1,1]
=> 0
[5,1]
=> [2,1,1,1,1]
=> 5
[4,2]
=> [2,2,1,1]
=> 8
[4,1,1]
=> [3,1,1,1]
=> 9
[3,3]
=> [2,2,2]
=> 9
[3,2,1]
=> [3,2,1]
=> 11
[3,1,1,1]
=> [4,1,1]
=> 12
[2,2,2]
=> [3,3]
=> 12
[2,2,1,1]
=> [4,2]
=> 13
[2,1,1,1,1]
=> [5,1]
=> 14
[1,1,1,1,1,1]
=> [6]
=> 15
[7]
=> [1,1,1,1,1,1,1]
=> 0
[6,1]
=> [2,1,1,1,1,1]
=> 6
[5,2]
=> [2,2,1,1,1]
=> 10
[5,1,1]
=> [3,1,1,1,1]
=> 11
[4,3]
=> [2,2,2,1]
=> 12
[4,2,1]
=> [3,2,1,1]
=> 14
[4,1,1,1]
=> [4,1,1,1]
=> 15
[3,3,1]
=> [3,2,2]
=> 15
[3,2,2]
=> [3,3,1]
=> 16
[3,2,1,1]
=> [4,2,1]
=> 17
[3,1,1,1,1]
=> [5,1,1]
=> 18
[2,2,2,1]
=> [4,3]
=> 18
[2,2,1,1,1]
=> [5,2]
=> 19
[2,1,1,1,1,1]
=> [6,1]
=> 20
[1,1,1,1,1,1,1]
=> [7]
=> 21
[8]
=> [1,1,1,1,1,1,1,1]
=> 0
[7,1]
=> [2,1,1,1,1,1,1]
=> 7
[6,2]
=> [2,2,1,1,1,1]
=> 12
[6,1,1]
=> [3,1,1,1,1,1]
=> 13
[5,3]
=> [2,2,2,1,1]
=> 15
[5,2,1]
=> [3,2,1,1,1]
=> 17
[]
=> []
=> ? = 0
Description
The Gini index of an integer partition. As discussed in [1], this statistic is equal to [[St000567]] applied to the conjugate partition.
Matching statistic: St000009
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> [[1]]
=> 0
[2]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1]
=> [2]
=> [[1,2]]
=> 1
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 3
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 4
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 5
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 6
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 6
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 7
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 8
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 9
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 10
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 5
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 8
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 9
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 9
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 11
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 12
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 12
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 13
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 14
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 15
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 0
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 6
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 10
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 11
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 12
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 14
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 15
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 15
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 16
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 17
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 18
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 18
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 19
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 20
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 21
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 0
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 7
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> 12
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> 13
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> 15
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> 17
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0
Description
The charge of a standard tableau.
Matching statistic: St000567
St000567: Integer partitions ⟶ ℤResult quality: 83% values known / values provided: 91%distinct values known / distinct values provided: 83%
Values
[1]
=> ? = 0
[2]
=> 0
[1,1]
=> 1
[3]
=> 0
[2,1]
=> 2
[1,1,1]
=> 3
[4]
=> 0
[3,1]
=> 3
[2,2]
=> 4
[2,1,1]
=> 5
[1,1,1,1]
=> 6
[5]
=> 0
[4,1]
=> 4
[3,2]
=> 6
[3,1,1]
=> 7
[2,2,1]
=> 8
[2,1,1,1]
=> 9
[1,1,1,1,1]
=> 10
[6]
=> 0
[5,1]
=> 5
[4,2]
=> 8
[4,1,1]
=> 9
[3,3]
=> 9
[3,2,1]
=> 11
[3,1,1,1]
=> 12
[2,2,2]
=> 12
[2,2,1,1]
=> 13
[2,1,1,1,1]
=> 14
[1,1,1,1,1,1]
=> 15
[7]
=> 0
[6,1]
=> 6
[5,2]
=> 10
[5,1,1]
=> 11
[4,3]
=> 12
[4,2,1]
=> 14
[4,1,1,1]
=> 15
[3,3,1]
=> 15
[3,2,2]
=> 16
[3,2,1,1]
=> 17
[3,1,1,1,1]
=> 18
[2,2,2,1]
=> 18
[2,2,1,1,1]
=> 19
[2,1,1,1,1,1]
=> 20
[1,1,1,1,1,1,1]
=> 21
[8]
=> 0
[7,1]
=> 7
[6,2]
=> 12
[6,1,1]
=> 13
[5,3]
=> 15
[5,2,1]
=> 17
[5,1,1,1]
=> 18
[5,4,3,1]
=> ? = 59
[5,4,2,2]
=> ? = 60
[5,4,2,1,1]
=> ? = 61
[5,3,3,2]
=> ? = 61
[5,3,3,1,1]
=> ? = 62
[5,3,2,2,1]
=> ? = 63
[4,4,3,2]
=> ? = 62
[4,4,3,1,1]
=> ? = 63
[4,4,2,2,1]
=> ? = 64
[4,3,3,2,1]
=> ? = 65
[5,4,3,2]
=> ? = 71
[5,4,3,1,1]
=> ? = 72
[5,4,2,2,1]
=> ? = 73
[5,3,3,2,1]
=> ? = 74
[4,4,3,2,1]
=> ? = 75
[5,4,3,2,1]
=> ? = 85
[]
=> ? = 0
Description
The sum of the products of all pairs of parts. This is the evaluation of the second elementary symmetric polynomial which is equal to $$e_2(\lambda) = \binom{n+1}{2} - \sum_{i=1}^\ell\binom{\lambda_i+1}{2}$$ for a partition $\lambda = (\lambda_1,\dots,\lambda_\ell) \vdash n$, see [1]. This is the maximal number of inversions a permutation with the given shape can have, see [2, cor.2.4].
Matching statistic: St000169
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 67% values known / values provided: 74%distinct values known / distinct values provided: 67%
Values
[1]
=> [1]
=> [[1]]
=> [[1]]
=> 0
[2]
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
[1,1]
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 1
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 2
[1,1,1]
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 4
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 5
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 6
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 4
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 6
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 7
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 8
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 9
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 10
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 5
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 8
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 9
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 9
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 11
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 12
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 12
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 13
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 14
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 0
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 6
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 10
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 11
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 12
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 14
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 15
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 15
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 16
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 17
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 18
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 18
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 19
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 20
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [[1,2,3,4,5,6,7,8]]
=> 0
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [[1,3,4,5,6,7,8],[2]]
=> 7
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [[1,3,5,6,7,8],[2,4]]
=> 12
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [[1,4,5,6,7,8],[2],[3]]
=> 13
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [[1,3,5,7,8],[2,4,6]]
=> 15
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [[1,4,6,7,8],[2,5],[3]]
=> 17
[5,4,2]
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [[1,4,7,9,11],[2,5,8,10],[3,6]]
=> ? = 38
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,5,7,9,11],[2,6,8,10],[3],[4]]
=> ? = 39
[5,3,3]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [[1,4,7,10,11],[2,5,8],[3,6,9]]
=> ? = 39
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [[1,5,8,10,11],[2,6,9],[3,7],[4]]
=> ? = 41
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [[1,6,8,10,11],[2,7,9],[3],[4],[5]]
=> ? = 42
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [[1,5,9,10,11],[2,6],[3,7],[4,8]]
=> ? = 42
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [[1,6,9,10,11],[2,7],[3,8],[4],[5]]
=> ? = 43
[4,4,3]
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9]]
=> ? = 40
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [[1,5,8,10],[2,6,9,11],[3,7],[4]]
=> ? = 42
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [[1,6,8,10],[2,7,9,11],[3],[4],[5]]
=> ? = 43
[4,3,3,1]
=> [4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [[1,5,8,11],[2,6,9],[3,7,10],[4]]
=> ? = 43
[4,3,2,2]
=> [4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [[1,5,9,11],[2,6,10],[3,7],[4,8]]
=> ? = 44
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [[1,6,9,11],[2,7,10],[3,8],[4],[5]]
=> ? = 45
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 46
[3,3,3,2]
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [[1,5,9],[2,6,10],[3,7,11],[4,8]]
=> ? = 45
[3,3,3,1,1]
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [[1,6,9],[2,7,10],[3,8,11],[4],[5]]
=> ? = 46
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [[1,6,10],[2,7,11],[3,8],[4,9],[5]]
=> ? = 47
[6,4,2]
=> [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 44
[5,4,3]
=> [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> [[1,4,7,10,12],[2,5,8,11],[3,6,9]]
=> ? = 47
[5,4,2,1]
=> [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 49
[5,4,1,1,1]
=> [5,2,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]]
=> [[1,6,8,10,12],[2,7,9,11],[3],[4],[5]]
=> ? = 50
[5,3,3,1]
=> [4,3,3,1,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]]
=> [[1,5,8,11,12],[2,6,9],[3,7,10],[4]]
=> ? = 50
[5,3,2,2]
=> [4,4,2,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]]
=> [[1,5,9,11,12],[2,6,10],[3,7],[4,8]]
=> ? = 51
[5,3,2,1,1]
=> [5,3,2,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]]
=> [[1,6,9,11,12],[2,7,10],[3,8],[4],[5]]
=> ? = 52
[5,2,2,2,1]
=> [5,4,1,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]]
=> [[1,6,10,11,12],[2,7],[3,8],[4,9],[5]]
=> ? = 53
[4,4,3,1]
=> [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> [[1,5,8,11],[2,6,9,12],[3,7,10],[4]]
=> ? = 51
[4,4,2,2]
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> [[1,5,9,11],[2,6,10,12],[3,7],[4,8]]
=> ? = 52
[4,4,2,1,1]
=> [5,3,2,2]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12]]
=> [[1,6,9,11],[2,7,10,12],[3,8],[4],[5]]
=> ? = 53
[4,3,3,2]
=> [4,4,3,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12]]
=> [[1,5,9,12],[2,6,10],[3,7,11],[4,8]]
=> ? = 53
[4,3,3,1,1]
=> [5,3,3,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12]]
=> [[1,6,9,12],[2,7,10],[3,8,11],[4],[5]]
=> ? = 54
[4,3,2,2,1]
=> [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [[1,6,10,12],[2,7,11],[3,8],[4,9],[5]]
=> ? = 55
[3,3,3,2,1]
=> [5,4,3]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12]]
=> [[1,6,10],[2,7,11],[3,8,12],[4,9],[5]]
=> ? = 56
[3,3,2,2,1,1]
=> [6,4,2]
=> [[1,2,3,4,5,6],[7,8,9,10],[11,12]]
=> [[1,7,11],[2,8,12],[3,9],[4,10],[5],[6]]
=> ? = 58
[5,4,3,1]
=> [4,3,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]]
=> [[1,5,8,11,13],[2,6,9,12],[3,7,10],[4]]
=> ? = 59
[5,4,2,2]
=> [4,4,2,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]]
=> [[1,5,9,11,13],[2,6,10,12],[3,7],[4,8]]
=> ? = 60
[5,4,2,1,1]
=> [5,3,2,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]]
=> [[1,6,9,11,13],[2,7,10,12],[3,8],[4],[5]]
=> ? = 61
[5,3,3,2]
=> [4,4,3,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]]
=> [[1,5,9,12,13],[2,6,10],[3,7,11],[4,8]]
=> ? = 61
[5,3,3,1,1]
=> [5,3,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]]
=> [[1,6,9,12,13],[2,7,10],[3,8,11],[4],[5]]
=> ? = 62
[5,3,2,2,1]
=> [5,4,2,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]]
=> [[1,6,10,12,13],[2,7,11],[3,8],[4,9],[5]]
=> ? = 63
[4,4,3,2]
=> [4,4,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]]
=> [[1,5,9,12],[2,6,10,13],[3,7,11],[4,8]]
=> ? = 62
[4,4,3,1,1]
=> [5,3,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]]
=> [[1,6,9,12],[2,7,10,13],[3,8,11],[4],[5]]
=> ? = 63
[4,4,2,2,1]
=> [5,4,2,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]]
=> [[1,6,10,12],[2,7,11,13],[3,8],[4,9],[5]]
=> ? = 64
[4,3,3,2,1]
=> [5,4,3,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]]
=> [[1,6,10,13],[2,7,11],[3,8,12],[4,9],[5]]
=> ? = 65
[5,4,3,2]
=> [4,4,3,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]]
=> [[1,5,9,12,14],[2,6,10,13],[3,7,11],[4,8]]
=> ? = 71
[5,4,3,1,1]
=> [5,3,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]]
=> [[1,6,9,12,14],[2,7,10,13],[3,8,11],[4],[5]]
=> ? = 72
[5,4,2,2,1]
=> [5,4,2,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]]
=> [[1,6,10,12,14],[2,7,11,13],[3,8],[4,9],[5]]
=> ? = 73
[5,3,3,2,1]
=> [5,4,3,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]]
=> [[1,6,10,13,14],[2,7,11],[3,8,12],[4,9],[5]]
=> ? = 74
[4,4,3,2,1]
=> [5,4,3,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]]
=> [[1,6,10,13],[2,7,11,14],[3,8,12],[4,9],[5]]
=> ? = 75
[5,4,3,2,1]
=> [5,4,3,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]]
=> [[1,6,10,13,15],[2,7,11,14],[3,8,12],[4,9],[5]]
=> ? = 85
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm: 1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$. 2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000330
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 67% values known / values provided: 74%distinct values known / distinct values provided: 67%
Values
[1]
=> [1]
=> [[1]]
=> [[1]]
=> 0
[2]
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
[1,1]
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 1
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> 2
[1,1,1]
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 4
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> 5
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 6
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 4
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 6
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 7
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 8
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> 9
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 10
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 5
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 8
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 9
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 9
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 11
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 12
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 12
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 13
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> 14
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 0
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> 6
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7]]
=> 10
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 11
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7]]
=> 12
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7]]
=> 14
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 15
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 15
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> 16
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7]]
=> 17
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 18
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7]]
=> 18
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 19
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 20
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [[1,2,3,4,5,6,7,8]]
=> 0
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7],[8]]
=> 7
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [[1,2,3,4,5,7],[6,8]]
=> 12
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7],[8]]
=> 13
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [[1,2,3,5,7],[4,6,8]]
=> 15
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7],[8]]
=> 17
[5,4,2]
=> [3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11]]
=> ? = 38
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,3,10,11],[2,5],[4,7],[6,9],[8]]
=> [[1,2,4,6,8],[3,5,7,9],[10],[11]]
=> ? = 39
[5,3,3]
=> [3,3,3,1,1]
=> [[1,4,5],[2,7,8],[3,10,11],[6],[9]]
=> [[1,2,3,6,9],[4,7,10],[5,8,11]]
=> ? = 39
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,4,7,11],[2,6,10],[3,9],[5],[8]]
=> [[1,2,3,5,8],[4,6,9],[7,10],[11]]
=> ? = 41
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,4,9,10,11],[2,6],[3,8],[5],[7]]
=> [[1,2,3,5,7],[4,6,8],[9],[10],[11]]
=> ? = 42
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,5,6,7],[2,9,10,11],[3],[4],[8]]
=> [[1,2,3,4,8],[5,9],[6,10],[7,11]]
=> ? = 42
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,5,6,10,11],[2,8,9],[3],[4],[7]]
=> [[1,2,3,4,7],[5,8],[6,9],[10],[11]]
=> ? = 43
[4,4,3]
=> [3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11]]
=> ? = 40
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,7,11],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10],[11]]
=> ? = 42
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> ? = 43
[4,3,3,1]
=> [4,3,3,1]
=> [[1,3,4,11],[2,6,7],[5,9,10],[8]]
=> [[1,2,5,8],[3,6,9],[4,7,10],[11]]
=> ? = 43
[4,3,2,2]
=> [4,4,2,1]
=> [[1,3,6,7],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11]]
=> ? = 44
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,3,6,10,11],[2,5,9],[4,8],[7]]
=> [[1,2,4,7],[3,5,8],[6,9],[10],[11]]
=> ? = 45
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> ? = 46
[3,3,3,2]
=> [4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> [[1,4,8],[2,5,9],[3,6,10],[7,11]]
=> ? = 45
[3,3,3,1,1]
=> [5,3,3]
=> [[1,2,3,10,11],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10],[11]]
=> ? = 46
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11]]
=> ? = 47
[6,4,2]
=> [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 44
[5,4,3]
=> [3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11],[10]]
=> [[1,2,4,7,10],[3,5,8,11],[6,9,12]]
=> ? = 47
[5,4,2,1]
=> [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11],[12]]
=> ? = 49
[5,4,1,1,1]
=> [5,2,2,2,1]
=> [[1,3,10,11,12],[2,5],[4,7],[6,9],[8]]
=> [[1,2,4,6,8],[3,5,7,9],[10],[11],[12]]
=> ? = 50
[5,3,3,1]
=> [4,3,3,1,1]
=> [[1,4,5,12],[2,7,8],[3,10,11],[6],[9]]
=> [[1,2,3,6,9],[4,7,10],[5,8,11],[12]]
=> ? = 50
[5,3,2,2]
=> [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> [[1,2,3,5,9],[4,6,10],[7,11],[8,12]]
=> ? = 51
[5,3,2,1,1]
=> [5,3,2,1,1]
=> [[1,4,7,11,12],[2,6,10],[3,9],[5],[8]]
=> [[1,2,3,5,8],[4,6,9],[7,10],[11],[12]]
=> ? = 52
[5,2,2,2,1]
=> [5,4,1,1,1]
=> [[1,5,6,7,12],[2,9,10,11],[3],[4],[8]]
=> [[1,2,3,4,8],[5,9],[6,10],[7,11],[12]]
=> ? = 53
[4,4,3,1]
=> [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11],[12]]
=> ? = 51
[4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 52
[4,4,2,1,1]
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10],[11],[12]]
=> ? = 53
[4,3,3,2]
=> [4,4,3,1]
=> [[1,3,4,8],[2,6,7,12],[5,10,11],[9]]
=> [[1,2,5,9],[3,6,10],[4,7,11],[8,12]]
=> ? = 53
[4,3,3,1,1]
=> [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [[1,2,5,8],[3,6,9],[4,7,10],[11],[12]]
=> ? = 54
[4,3,2,2,1]
=> [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11],[12]]
=> ? = 55
[3,3,3,2,1]
=> [5,4,3]
=> [[1,2,3,7,12],[4,5,6,11],[8,9,10]]
=> [[1,4,8],[2,5,9],[3,6,10],[7,11],[12]]
=> ? = 56
[3,3,2,2,1,1]
=> [6,4,2]
=> [[1,2,5,6,11,12],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11],[12]]
=> ? = 58
[5,4,3,1]
=> [4,3,3,2,1]
=> [[1,3,6,13],[2,5,9],[4,8,12],[7,11],[10]]
=> [[1,2,4,7,10],[3,5,8,11],[6,9,12],[13]]
=> ? = 59
[5,4,2,2]
=> [4,4,2,2,1]
=> [[1,3,8,9],[2,5,12,13],[4,7],[6,11],[10]]
=> [[1,2,4,6,10],[3,5,7,11],[8,12],[9,13]]
=> ? = 60
[5,4,2,1,1]
=> [5,3,2,2,1]
=> [[1,3,8,12,13],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11],[12],[13]]
=> ? = 61
[5,3,3,2]
=> [4,4,3,1,1]
=> [[1,4,5,9],[2,7,8,13],[3,11,12],[6],[10]]
=> [[1,2,3,6,10],[4,7,11],[5,8,12],[9,13]]
=> ? = 61
[5,3,3,1,1]
=> [5,3,3,1,1]
=> [[1,4,5,12,13],[2,7,8],[3,10,11],[6],[9]]
=> [[1,2,3,6,9],[4,7,10],[5,8,11],[12],[13]]
=> ? = 62
[5,3,2,2,1]
=> [5,4,2,1,1]
=> [[1,4,7,8,13],[2,6,11,12],[3,10],[5],[9]]
=> [[1,2,3,5,9],[4,6,10],[7,11],[8,12],[13]]
=> ? = 63
[4,4,3,2]
=> [4,4,3,2]
=> [[1,2,5,9],[3,4,8,13],[6,7,12],[10,11]]
=> [[1,3,6,10],[2,4,7,11],[5,8,12],[9,13]]
=> ? = 62
[4,4,3,1,1]
=> [5,3,3,2]
=> [[1,2,5,12,13],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11],[12],[13]]
=> ? = 63
[4,4,2,2,1]
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 64
[4,3,3,2,1]
=> [5,4,3,1]
=> [[1,3,4,8,13],[2,6,7,12],[5,10,11],[9]]
=> [[1,2,5,9],[3,6,10],[4,7,11],[8,12],[13]]
=> ? = 65
[5,4,3,2]
=> [4,4,3,2,1]
=> [[1,3,6,10],[2,5,9,14],[4,8,13],[7,12],[11]]
=> [[1,2,4,7,11],[3,5,8,12],[6,9,13],[10,14]]
=> ? = 71
[5,4,3,1,1]
=> [5,3,3,2,1]
=> [[1,3,6,13,14],[2,5,9],[4,8,12],[7,11],[10]]
=> [[1,2,4,7,10],[3,5,8,11],[6,9,12],[13],[14]]
=> ? = 72
[5,4,2,2,1]
=> [5,4,2,2,1]
=> [[1,3,8,9,14],[2,5,12,13],[4,7],[6,11],[10]]
=> [[1,2,4,6,10],[3,5,7,11],[8,12],[9,13],[14]]
=> ? = 73
[5,3,3,2,1]
=> [5,4,3,1,1]
=> [[1,4,5,9,14],[2,7,8,13],[3,11,12],[6],[10]]
=> [[1,2,3,6,10],[4,7,11],[5,8,12],[9,13],[14]]
=> ? = 74
[4,4,3,2,1]
=> [5,4,3,2]
=> [[1,2,5,9,14],[3,4,8,13],[6,7,12],[10,11]]
=> [[1,3,6,10],[2,4,7,11],[5,8,12],[9,13],[14]]
=> ? = 75
[5,4,3,2,1]
=> [5,4,3,2,1]
=> [[1,3,6,10,15],[2,5,9,14],[4,8,13],[7,12],[11]]
=> [[1,2,4,7,11],[3,5,8,12],[6,9,13],[10,14],[15]]
=> ? = 85
Description
The (standard) major index of a standard tableau. A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000018: Permutations ⟶ ℤResult quality: 66% values known / values provided: 73%distinct values known / distinct values provided: 66%
Values
[1]
=> [[1]]
=> [1] => 0
[2]
=> [[1,2]]
=> [1,2] => 0
[1,1]
=> [[1],[2]]
=> [2,1] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => 0
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 0
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 5
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 6
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 0
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 4
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 6
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 8
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 9
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 10
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 5
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 8
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 9
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 9
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 12
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 12
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 13
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 14
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 15
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => 6
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => 10
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 11
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => 12
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => 14
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => 15
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => 16
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => 17
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 18
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => 18
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => 19
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 20
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 21
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => 0
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => 7
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => 12
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => 13
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => 15
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => 17
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [10,11,6,7,8,9,1,2,3,4,5] => ? = 38
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [11,10,6,7,8,9,1,2,3,4,5] => ? = 39
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [9,10,11,6,7,8,1,2,3,4,5] => ? = 39
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [11,9,10,6,7,8,1,2,3,4,5] => ? = 41
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [11,10,9,6,7,8,1,2,3,4,5] => ? = 42
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [10,11,8,9,6,7,1,2,3,4,5] => ? = 42
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [11,10,8,9,6,7,1,2,3,4,5] => ? = 43
[4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [9,10,11,5,6,7,8,1,2,3,4] => ? = 40
[4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [11,9,10,5,6,7,8,1,2,3,4] => ? = 42
[4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [11,10,9,5,6,7,8,1,2,3,4] => ? = 43
[4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [11,8,9,10,5,6,7,1,2,3,4] => ? = 43
[4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [10,11,8,9,5,6,7,1,2,3,4] => ? = 44
[4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [11,10,8,9,5,6,7,1,2,3,4] => ? = 45
[4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,5,6,1,2,3,4] => ? = 46
[3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [10,11,7,8,9,4,5,6,1,2,3] => ? = 45
[3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [11,10,7,8,9,4,5,6,1,2,3] => ? = 46
[3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,4,5,6,1,2,3] => ? = 47
[12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [1,2,3,4,5,6,7,8,9,10,11,12] => ? = 0
[6,4,2]
=> [[1,2,3,4,5,6],[7,8,9,10],[11,12]]
=> [11,12,7,8,9,10,1,2,3,4,5,6] => ? = 44
[5,4,3]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12]]
=> [10,11,12,6,7,8,9,1,2,3,4,5] => ? = 47
[5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [12,10,11,6,7,8,9,1,2,3,4,5] => ? = 49
[5,4,1,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]]
=> [12,11,10,6,7,8,9,1,2,3,4,5] => ? = 50
[5,3,3,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12]]
=> [12,9,10,11,6,7,8,1,2,3,4,5] => ? = 50
[5,3,2,2]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12]]
=> [11,12,9,10,6,7,8,1,2,3,4,5] => ? = 51
[5,3,2,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]]
=> [12,11,9,10,6,7,8,1,2,3,4,5] => ? = 52
[5,2,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]]
=> [12,10,11,8,9,6,7,1,2,3,4,5] => ? = 53
[4,4,3,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12]]
=> [12,9,10,11,5,6,7,8,1,2,3,4] => ? = 51
[4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> [11,12,9,10,5,6,7,8,1,2,3,4] => ? = 52
[4,4,2,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]]
=> [12,11,9,10,5,6,7,8,1,2,3,4] => ? = 53
[4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> [11,12,8,9,10,5,6,7,1,2,3,4] => ? = 53
[4,3,3,1,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]]
=> [12,11,8,9,10,5,6,7,1,2,3,4] => ? = 54
[4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [12,10,11,8,9,5,6,7,1,2,3,4] => ? = 55
[3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> [12,10,11,7,8,9,4,5,6,1,2,3] => ? = 56
[3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 58
[2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> [11,12,9,10,7,8,5,6,3,4,1,2] => ? = 60
[5,4,3,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]]
=> [13,10,11,12,6,7,8,9,1,2,3,4,5] => ? = 59
[5,4,2,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]]
=> [12,13,10,11,6,7,8,9,1,2,3,4,5] => ? = 60
[5,4,2,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]]
=> [13,12,10,11,6,7,8,9,1,2,3,4,5] => ? = 61
[5,3,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]]
=> [12,13,9,10,11,6,7,8,1,2,3,4,5] => ? = 61
[5,3,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]]
=> [13,12,9,10,11,6,7,8,1,2,3,4,5] => ? = 62
[5,3,2,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]]
=> [13,11,12,9,10,6,7,8,1,2,3,4,5] => ? = 63
[4,4,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]]
=> [12,13,9,10,11,5,6,7,8,1,2,3,4] => ? = 62
[4,4,3,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]]
=> [13,12,9,10,11,5,6,7,8,1,2,3,4] => ? = 63
[4,4,2,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]]
=> [13,11,12,9,10,5,6,7,8,1,2,3,4] => ? = 64
[4,3,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]]
=> [13,11,12,8,9,10,5,6,7,1,2,3,4] => ? = 65
[5,4,3,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]]
=> [13,14,10,11,12,6,7,8,9,1,2,3,4,5] => ? = 71
[5,4,3,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]]
=> [14,13,10,11,12,6,7,8,9,1,2,3,4,5] => ? = 72
[5,4,2,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]]
=> [14,12,13,10,11,6,7,8,9,1,2,3,4,5] => ? = 73
[5,3,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]]
=> [14,12,13,9,10,11,6,7,8,1,2,3,4,5] => ? = 74
[4,4,3,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]]
=> [14,12,13,9,10,11,5,6,7,8,1,2,3,4] => ? = 75
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00064: Permutations reversePermutations
St000246: Permutations ⟶ ℤResult quality: 41% values known / values provided: 41%distinct values known / distinct values provided: 54%
Values
[1]
=> [[1]]
=> [1] => [1] => 0
[2]
=> [[1,2]]
=> [1,2] => [2,1] => 0
[1,1]
=> [[1],[2]]
=> [2,1] => [1,2] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [3,2,1] => 0
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [2,1,3] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 3
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [4,3,2,1] => 0
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [3,2,1,4] => 3
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [2,1,4,3] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [2,1,3,4] => 5
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 6
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [5,4,3,2,1] => 0
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [4,3,2,1,5] => 4
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [3,2,1,5,4] => 6
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2,1,4,5] => 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [2,1,4,3,5] => 8
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [2,1,3,4,5] => 9
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 10
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [5,4,3,2,1,6] => 5
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [4,3,2,1,6,5] => 8
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [4,3,2,1,5,6] => 9
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,2,1,6,5,4] => 9
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [3,2,1,5,4,6] => 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [3,2,1,4,5,6] => 12
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,1,4,3,6,5] => 12
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [2,1,4,3,5,6] => 13
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [2,1,3,4,5,6] => 14
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => 15
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [6,5,4,3,2,1,7] => 6
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [5,4,3,2,1,7,6] => 10
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [5,4,3,2,1,6,7] => 11
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [4,3,2,1,7,6,5] => ? = 12
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [4,3,2,1,6,5,7] => ? = 14
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [4,3,2,1,5,6,7] => 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [3,2,1,6,5,4,7] => ? = 15
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [3,2,1,5,4,7,6] => ? = 16
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [3,2,1,5,4,6,7] => ? = 17
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [3,2,1,4,5,6,7] => 18
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [2,1,4,3,6,5,7] => ? = 18
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [2,1,4,3,5,6,7] => ? = 19
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [2,1,3,4,5,6,7] => 20
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => 21
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => [8,7,6,5,4,3,2,1] => 0
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,8] => 7
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => [6,5,4,3,2,1,8,7] => 12
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => [6,5,4,3,2,1,7,8] => 13
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => [5,4,3,2,1,8,7,6] => 15
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,8] => ? = 17
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => [5,4,3,2,1,6,7,8] => 18
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5] => 16
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,8] => ? = 19
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => [4,3,2,1,6,5,8,7] => 20
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => [4,3,2,1,6,5,7,8] => ? = 21
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => [4,3,2,1,5,6,7,8] => 22
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => [3,2,1,6,5,4,8,7] => ? = 21
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => [3,2,1,6,5,4,7,8] => ? = 22
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => [3,2,1,5,4,7,6,8] => ? = 23
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => [3,2,1,5,4,6,7,8] => ? = 24
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => [3,2,1,4,5,6,7,8] => 25
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [2,1,4,3,6,5,8,7] => 24
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => [2,1,4,3,6,5,7,8] => ? = 25
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => [2,1,4,3,5,6,7,8] => ? = 26
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => [2,1,3,4,5,6,7,8] => 27
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => 28
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,9,8] => ? = 14
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => [6,5,4,3,2,1,9,8,7] => ? = 18
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => [6,5,4,3,2,1,8,7,9] => ? = 20
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => [5,4,3,2,1,9,8,7,6] => ? = 20
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => [5,4,3,2,1,8,7,6,9] => ? = 23
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,9,8] => ? = 24
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,8,9] => ? = 25
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5,9] => ? = 24
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,9,8] => ? = 26
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,8,9] => ? = 27
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => [4,3,2,1,6,5,8,7,9] => ? = 28
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => [4,3,2,1,6,5,7,8,9] => ? = 29
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [3,2,1,6,5,4,9,8,7] => ? = 27
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => [3,2,1,6,5,4,8,7,9] => ? = 29
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => [3,2,1,6,5,4,7,8,9] => ? = 30
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => [3,2,1,5,4,7,6,9,8] => ? = 30
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [9,8,6,7,4,5,1,2,3] => [3,2,1,5,4,7,6,8,9] => ? = 31
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [9,8,7,6,4,5,1,2,3] => [3,2,1,5,4,6,7,8,9] => ? = 32
[2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => [2,1,4,3,6,5,8,7,9] => ? = 32
[2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => [2,1,4,3,6,5,7,8,9] => ? = 33
[2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => [2,1,4,3,5,6,7,8,9] => ? = 34
[7,3]
=> [[1,2,3,4,5,6,7],[8,9,10]]
=> [8,9,10,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,10,9,8] => ? = 21
[7,2,1]
=> [[1,2,3,4,5,6,7],[8,9],[10]]
=> [10,8,9,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,9,8,10] => ? = 23
[6,3,1]
=> [[1,2,3,4,5,6],[7,8,9],[10]]
=> [10,7,8,9,1,2,3,4,5,6] => [6,5,4,3,2,1,9,8,7,10] => ? = 27
[6,2,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10]]
=> [10,9,7,8,1,2,3,4,5,6] => [6,5,4,3,2,1,8,7,9,10] => ? = 29
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> [6,7,8,9,10,1,2,3,4,5] => [5,4,3,2,1,10,9,8,7,6] => ? = 25
[5,4,1]
=> [[1,2,3,4,5],[6,7,8,9],[10]]
=> [10,6,7,8,9,1,2,3,4,5] => [5,4,3,2,1,9,8,7,6,10] => ? = 29
[5,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10]]
=> [9,10,6,7,8,1,2,3,4,5] => [5,4,3,2,1,8,7,6,10,9] => ? = 31
[5,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10]]
=> [10,9,6,7,8,1,2,3,4,5] => [5,4,3,2,1,8,7,6,9,10] => ? = 32
[5,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10]]
=> [10,8,9,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,9,8,10] => ? = 33
[5,2,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10]]
=> [10,9,8,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,8,9,10] => ? = 34
[4,4,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10]]
=> [10,9,5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5,9,10] => ? = 33
[4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> [8,9,10,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,10,9,8] => ? = 33
[4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> [10,8,9,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,9,8,10] => ? = 35
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00284: Standard tableaux rowsSet partitions
St000564: Set partitions ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 31%
Values
[1]
=> [[1]]
=> {{1}}
=> ? = 0
[2]
=> [[1,2]]
=> {{1,2}}
=> 0
[1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 1
[3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 0
[2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 3
[4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 0
[3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 3
[2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 4
[2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 5
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 6
[5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 0
[4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 4
[3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 6
[3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 7
[2,2,1]
=> [[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> 8
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> 9
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> 10
[6]
=> [[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> 0
[5,1]
=> [[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> 5
[4,2]
=> [[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> 8
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> {{1,4,5,6},{2},{3}}
=> 9
[3,3]
=> [[1,2,3],[4,5,6]]
=> {{1,2,3},{4,5,6}}
=> 9
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> {{1,3,6},{2,5},{4}}
=> 11
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> {{1,5,6},{2},{3},{4}}
=> 12
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> {{1,2},{3,4},{5,6}}
=> 12
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> {{1,4},{2,6},{3},{5}}
=> 13
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> {{1,6},{2},{3},{4},{5}}
=> 14
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> {{1},{2},{3},{4},{5},{6}}
=> 15
[7]
=> [[1,2,3,4,5,6,7]]
=> {{1,2,3,4,5,6,7}}
=> 0
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> {{1,3,4,5,6,7},{2}}
=> 6
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> {{1,2,5,6,7},{3,4}}
=> 10
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> {{1,4,5,6,7},{2},{3}}
=> 11
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> {{1,2,3,7},{4,5,6}}
=> 12
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> {{1,3,6,7},{2,5},{4}}
=> 14
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> {{1,5,6,7},{2},{3},{4}}
=> 15
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> {{1,3,4},{2,6,7},{5}}
=> 15
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> {{1,2,7},{3,4},{5,6}}
=> 16
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> {{1,4,7},{2,6},{3},{5}}
=> 17
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> {{1,6,7},{2},{3},{4},{5}}
=> 18
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> {{1,3},{2,5},{4,7},{6}}
=> 18
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> {{1,5},{2,7},{3},{4},{6}}
=> 19
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> {{1,7},{2},{3},{4},{5},{6}}
=> 20
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> {{1},{2},{3},{4},{5},{6},{7}}
=> 21
[8]
=> [[1,2,3,4,5,6,7,8]]
=> {{1,2,3,4,5,6,7,8}}
=> 0
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> {{1,3,4,5,6,7,8},{2}}
=> 7
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> {{1,2,5,6,7,8},{3,4}}
=> 12
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> {{1,4,5,6,7,8},{2},{3}}
=> 13
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 15
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> {{1,3,6,7,8},{2,5},{4}}
=> ? = 17
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> {{1,5,6,7,8},{2},{3},{4}}
=> ? = 18
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 16
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> {{1,3,4,8},{2,6,7},{5}}
=> ? = 19
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> {{1,2,7,8},{3,4},{5,6}}
=> ? = 20
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> {{1,4,7,8},{2,6},{3},{5}}
=> ? = 21
[4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> {{1,6,7,8},{2},{3},{4},{5}}
=> ? = 22
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> {{1,2,5},{3,4,8},{6,7}}
=> ? = 21
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> {{1,4,5},{2,7,8},{3},{6}}
=> ? = 22
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> {{1,3,8},{2,5},{4,7},{6}}
=> ? = 23
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> {{1,5,8},{2,7},{3},{4},{6}}
=> ? = 24
[3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> {{1,7,8},{2},{3},{4},{5},{6}}
=> ? = 25
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 24
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> {{1,4},{2,6},{3,8},{5},{7}}
=> ? = 25
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> {{1,6},{2,8},{3},{4},{5},{7}}
=> ? = 26
[2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 27
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 28
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 0
[8,1]
=> [[1,3,4,5,6,7,8,9],[2]]
=> {{1,3,4,5,6,7,8,9},{2}}
=> ? = 8
[7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> {{1,2,5,6,7,8,9},{3,4}}
=> ? = 14
[7,1,1]
=> [[1,4,5,6,7,8,9],[2],[3]]
=> {{1,4,5,6,7,8,9},{2},{3}}
=> ? = 15
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> {{1,2,3,7,8,9},{4,5,6}}
=> ? = 18
[6,2,1]
=> [[1,3,6,7,8,9],[2,5],[4]]
=> {{1,3,6,7,8,9},{2,5},{4}}
=> ? = 20
[6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> {{1,5,6,7,8,9},{2},{3},{4}}
=> ? = 21
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> {{1,2,3,4,9},{5,6,7,8}}
=> ? = 20
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> {{1,3,4,8,9},{2,6,7},{5}}
=> ? = 23
[5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> {{1,2,7,8,9},{3,4},{5,6}}
=> ? = 24
[5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> {{1,4,7,8,9},{2,6},{3},{5}}
=> ? = 25
[5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> {{1,6,7,8,9},{2},{3},{4},{5}}
=> ? = 26
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> {{1,3,4,5},{2,7,8,9},{6}}
=> ? = 24
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> {{1,2,5,9},{3,4,8},{6,7}}
=> ? = 26
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> {{1,4,5,9},{2,7,8},{3},{6}}
=> ? = 27
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> {{1,3,8,9},{2,5},{4,7},{6}}
=> ? = 28
[4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> {{1,5,8,9},{2,7},{3},{4},{6}}
=> ? = 29
[4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> {{1,7,8,9},{2},{3},{4},{5},{6}}
=> ? = 30
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> {{1,2,3},{4,5,6},{7,8,9}}
=> ? = 27
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> {{1,3,6},{2,5,9},{4,8},{7}}
=> ? = 29
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> {{1,5,6},{2,8,9},{3},{4},{7}}
=> ? = 30
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> {{1,2,9},{3,4},{5,6},{7,8}}
=> ? = 30
[3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> {{1,4,9},{2,6},{3,8},{5},{7}}
=> ? = 31
[3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> {{1,6,9},{2,8},{3},{4},{5},{7}}
=> ? = 32
[3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> {{1,8,9},{2},{3},{4},{5},{6},{7}}
=> ? = 33
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> {{1,3},{2,5},{4,7},{6,9},{8}}
=> ? = 32
[2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> {{1,5},{2,7},{3,9},{4},{6},{8}}
=> ? = 33
[2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> {{1,7},{2,9},{3},{4},{5},{6},{8}}
=> ? = 34
[2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> {{1,9},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 35
[1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> {{1},{2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 36
[10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 0
Description
The number of occurrences of the pattern {{1},{2}} in a set partition.
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St001759: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
[1]
=> [[1]]
=> [1] => [1] => 0
[2]
=> [[1,2]]
=> [1,2] => [1,2] => 0
[1,1]
=> [[1],[2]]
=> [2,1] => [2,1] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [1,3,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 3
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,2,4,3] => 3
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => 5
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => 6
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => 4
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,4,2,5,3] => 6
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [3,1,5,4,2] => 8
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,5,4,3,2] => 9
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 10
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => 5
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,2,5,3,6,4] => 8
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => 9
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => 9
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,4,2,6,5,3] => 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => 12
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [5,3,1,6,4,2] => 12
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [3,1,6,5,4,2] => 13
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => 14
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 15
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [1,2,3,4,5,7,6] => 6
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [1,2,3,6,4,7,5] => 10
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [1,2,3,4,7,6,5] => 11
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [1,5,2,6,3,7,4] => 12
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [1,2,5,3,7,6,4] => ? = 14
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [1,2,3,7,6,5,4] => 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [4,1,5,2,7,6,3] => 15
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [1,6,4,2,7,5,3] => ? = 16
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [1,4,2,7,6,5,3] => 17
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [1,2,7,6,5,4,3] => 18
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [5,3,1,7,6,4,2] => 18
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [3,1,7,6,5,4,2] => 19
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => 20
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ? = 21
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => [1,2,3,4,5,6,8,7] => ? = 7
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => [1,2,3,4,7,5,8,6] => ? = 12
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => [1,2,3,4,5,8,7,6] => ? = 13
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => [1,2,6,3,7,4,8,5] => ? = 15
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => [1,2,3,6,4,8,7,5] => ? = 17
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => [1,2,3,4,8,7,6,5] => ? = 18
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [5,1,6,2,7,3,8,4] => ? = 16
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => [1,5,2,6,3,8,7,4] => ? = 19
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => [1,2,7,5,3,8,6,4] => ? = 20
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => [1,2,5,3,8,7,6,4] => ? = 21
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => [1,2,3,8,7,6,5,4] => ? = 22
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => [4,1,7,5,2,8,6,3] => ? = 21
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => [4,1,5,2,8,7,6,3] => ? = 22
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => [1,6,4,2,8,7,5,3] => ? = 23
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => [1,4,2,8,7,6,5,3] => ? = 24
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => [1,2,8,7,6,5,4,3] => ? = 25
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [7,5,3,1,8,6,4,2] => ? = 24
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => [5,3,1,8,7,6,4,2] => ? = 25
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => [3,1,8,7,6,5,4,2] => ? = 26
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => [1,8,7,6,5,4,3,2] => ? = 27
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => ? = 28
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 0
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,9,8] => ? = 8
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => [1,2,3,4,5,8,6,9,7] => ? = 14
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => [1,2,3,4,5,6,9,8,7] => ? = 15
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => [1,2,3,7,4,8,5,9,6] => ? = 18
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => [1,2,3,4,7,5,9,8,6] => ? = 20
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => [1,2,3,4,5,9,8,7,6] => ? = 21
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => [1,6,2,7,3,8,4,9,5] => ? = 20
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => [1,2,6,3,7,4,9,8,5] => ? = 23
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => [1,2,3,8,6,4,9,7,5] => ? = 24
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => [1,2,3,6,4,9,8,7,5] => ? = 25
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => [1,2,3,4,9,8,7,6,5] => ? = 26
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => [5,1,6,2,7,3,9,8,4] => ? = 24
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => [1,5,2,8,6,3,9,7,4] => ? = 26
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => [1,5,2,6,3,9,8,7,4] => ? = 27
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => [1,2,7,5,3,9,8,6,4] => ? = 28
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => [1,2,5,3,9,8,7,6,4] => ? = 29
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => [1,2,3,9,8,7,6,5,4] => ? = 30
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [7,4,1,8,5,2,9,6,3] => ? = 27
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => [4,1,7,5,2,9,8,6,3] => ? = 29
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => [4,1,5,2,9,8,7,6,3] => ? = 30
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => [1,8,6,4,2,9,7,5,3] => ? = 30
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [9,8,6,7,4,5,1,2,3] => [1,6,4,2,9,8,7,5,3] => ? = 31
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [9,8,7,6,4,5,1,2,3] => [1,4,2,9,8,7,6,5,3] => ? = 32
[3,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,1,2,3] => [1,2,9,8,7,6,5,4,3] => ? = 33
Description
The Rajchgot index of a permutation. The '''Rajchgot index''' of a permutation $\sigma$ is the degree of the ''Grothendieck polynomial'' of $\sigma$. This statistic on permutations was defined by Pechenik, Speyer, and Weigandt [1]. It can be computed by taking the maximum major index [[St000004]] of the permutations smaller than or equal to $\sigma$ in the right ''weak Bruhat order''.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000794The mak of a permutation. St000798The makl of a permutation. St001397Number of pairs of incomparable elements in a finite poset. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001428The number of B-inversions of a signed permutation. St000004The major index of a permutation. St000304The load of a permutation. St000795The mad of a permutation.