searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000078
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000078: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000078: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0]
=> [1,0]
=> [1] => 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 3
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 3
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 4
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 3
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 6
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 4
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 5
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => 6
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 10
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => 8
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 10
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 5
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => 6
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => 10
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => 15
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => 4
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4] => 20
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => 20
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 3
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => 6
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => 15
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,3] => 15
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => 4
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,2] => 6
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => 1
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,2,3,4,7,5,6] => 15
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5] => 10
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,2,3,6,4,7,5] => 40
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,3,6,4] => 15
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,5,6,3,4] => 20
Description
The number of alternating sign matrices whose left key is the permutation.
The left key of an alternating sign matrix was defined by Lascoux
in [2] and is obtained by successively removing all the `-1`'s until what remains is a permutation matrix. This notion corresponds to the notion of left key for semistandard tableaux.
Matching statistic: St000704
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
St000704: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> ? = 1
[2]
=> [1,1]
=> 1
[1,1]
=> [2]
=> 1
[3]
=> [1,1,1]
=> 1
[2,1]
=> [2,1]
=> 2
[1,1,1]
=> [3]
=> 1
[4]
=> [1,1,1,1]
=> 1
[3,1]
=> [2,1,1]
=> 3
[2,2]
=> [2,2]
=> 1
[2,1,1]
=> [3,1]
=> 3
[1,1,1,1]
=> [4]
=> 1
[5]
=> [1,1,1,1,1]
=> 1
[4,1]
=> [2,1,1,1]
=> 4
[3,2]
=> [2,2,1]
=> 3
[3,1,1]
=> [3,1,1]
=> 6
[2,2,1]
=> [3,2]
=> 2
[2,1,1,1]
=> [4,1]
=> 4
[1,1,1,1,1]
=> [5]
=> 1
[6]
=> [1,1,1,1,1,1]
=> 1
[5,1]
=> [2,1,1,1,1]
=> 5
[4,2]
=> [2,2,1,1]
=> 6
[4,1,1]
=> [3,1,1,1]
=> 10
[3,3]
=> [2,2,2]
=> 1
[3,2,1]
=> [3,2,1]
=> 8
[3,1,1,1]
=> [4,1,1]
=> 10
[2,2,2]
=> [3,3]
=> 1
[2,2,1,1]
=> [4,2]
=> 3
[2,1,1,1,1]
=> [5,1]
=> 5
[1,1,1,1,1,1]
=> [6]
=> 1
[7]
=> [1,1,1,1,1,1,1]
=> 1
[6,1]
=> [2,1,1,1,1,1]
=> 6
[5,2]
=> [2,2,1,1,1]
=> 10
[5,1,1]
=> [3,1,1,1,1]
=> 15
[4,3]
=> [2,2,2,1]
=> 4
[4,2,1]
=> [3,2,1,1]
=> 20
[4,1,1,1]
=> [4,1,1,1]
=> 20
[3,3,1]
=> [3,2,2]
=> 3
[3,2,2]
=> [3,3,1]
=> 6
[3,2,1,1]
=> [4,2,1]
=> 15
[3,1,1,1,1]
=> [5,1,1]
=> 15
[2,2,2,1]
=> [4,3]
=> 2
[2,2,1,1,1]
=> [5,2]
=> 4
[2,1,1,1,1,1]
=> [6,1]
=> 6
[1,1,1,1,1,1,1]
=> [7]
=> 1
[6,2]
=> [2,2,1,1,1,1]
=> 15
[5,3]
=> [2,2,2,1,1]
=> 10
[5,2,1]
=> [3,2,1,1,1]
=> 40
[4,4]
=> [2,2,2,2]
=> 1
[4,3,1]
=> [3,2,2,1]
=> 15
[4,2,2]
=> [3,3,1,1]
=> 20
[4,2,1,1]
=> [4,2,1,1]
=> 45
[5,4,4]
=> [3,3,3,3,1]
=> ? = 15
[4,3,3,3]
=> [4,4,4,1]
=> ? = 20
[]
=> []
=> ? = 1
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
Matching statistic: St000255
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 68% ●values known / values provided: 75%●distinct values known / distinct values provided: 68%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 68% ●values known / values provided: 75%●distinct values known / distinct values provided: 68%
Values
[1]
=> [1,0]
=> [1,0]
=> [1] => 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 3
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 3
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 4
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 3
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 6
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 4
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 5
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => 6
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 10
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => 8
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 10
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 5
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => 6
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => 10
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 15
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => 4
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4] => 20
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => ? = 20
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 3
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => 6
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => 15
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,3] => ? = 15
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => 4
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,2] => ? = 6
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => 1
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,2,3,4,7,5,6] => ? = 15
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5] => 10
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,2,3,6,4,7,5] => 40
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,3,6,4] => 15
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,5,6,3,4] => 20
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,2,5,3,6,7,4] => ? = 45
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => 3
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => 6
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,5,2,6,3] => 15
[3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,4,2,5,6,7,3] => ? = 24
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 1
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => 3
[2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,5,6,7,2] => ? = 5
[6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,2,3,7,4,5,6] => ? = 20
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,2,3,6,7,4,5] => ? = 50
[4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,5,2,3,6,7,4] => ? = 36
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,2,5,6,3,7,4] => ? = 60
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,4,5,2,6,7,3] => ? = 27
[2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,4,1,5,6,7,2] => ? = 4
[6,4]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,2,7,3,4,5,6] => ? = 15
[5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,2,6,3,7,4,5] => ? = 75
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,5,2,6,3,7,4] => ? = 64
[4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,2,5,6,7,3,4] => ? = 50
[3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,4,5,6,2,7,3] => ? = 24
[2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,5,1,6,7,2] => ? = 3
[5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,2,6,7,3,4,5] => ? = 50
[4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,5,6,2,3,7,4] => ? = 36
[4,3,2,2]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,7,3,4] => ? = 60
[3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,5,6,7,2,3] => ? = 15
[2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,6,1,7,2] => ? = 2
[]
=> []
=> []
=> [] => ? = 1
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000455
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 15%●distinct values known / distinct values provided: 5%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 15%●distinct values known / distinct values provided: 5%
Values
[1]
=> 10 => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
[2]
=> 100 => [1,3] => ([(2,3)],4)
=> 0 = 1 - 1
[1,1]
=> 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3]
=> 1000 => [1,4] => ([(3,4)],5)
=> 0 = 1 - 1
[2,1]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,1,1]
=> 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4]
=> 10000 => [1,5] => ([(4,5)],6)
=> 0 = 1 - 1
[3,1]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,2]
=> 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,1]
=> 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,1,1]
=> 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[5]
=> 100000 => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
[4,1]
=> 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[3,2]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[3,1,1]
=> 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[2,2,1]
=> 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[2,1,1,1]
=> 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,1,1,1]
=> 111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
[6]
=> 1000000 => [1,7] => ([(6,7)],8)
=> ? = 1 - 1
[5,1]
=> 1000010 => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 - 1
[4,2]
=> 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[4,1,1]
=> 1000110 => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10 - 1
[3,3]
=> 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[3,2,1]
=> 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 8 - 1
[3,1,1,1]
=> 1001110 => [1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10 - 1
[2,2,2]
=> 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[2,2,1,1]
=> 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[2,1,1,1,1]
=> 1011110 => [1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 - 1
[1,1,1,1,1,1]
=> 1111110 => [1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[7]
=> 10000000 => [1,8] => ([(7,8)],9)
=> ? = 1 - 1
[6,1]
=> 10000010 => [1,6,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 - 1
[5,2]
=> 1000100 => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10 - 1
[5,1,1]
=> 10000110 => [1,5,1,2] => ([(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 15 - 1
[4,3]
=> 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[4,2,1]
=> 1001010 => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20 - 1
[4,1,1,1]
=> 10001110 => [1,4,1,1,2] => ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 20 - 1
[3,3,1]
=> 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[3,2,2]
=> 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[3,2,1,1]
=> 1010110 => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15 - 1
[3,1,1,1,1]
=> 10011110 => [1,3,1,1,1,2] => ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 15 - 1
[2,2,2,1]
=> 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
[2,2,1,1,1]
=> 1101110 => [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 - 1
[2,1,1,1,1,1]
=> 10111110 => [1,2,1,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 - 1
[1,1,1,1,1,1,1]
=> 11111110 => [1,1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 - 1
[6,2]
=> 10000100 => [1,5,3] => ([(2,8),(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 15 - 1
[5,3]
=> 1001000 => [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10 - 1
[5,2,1]
=> 10001010 => [1,4,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 40 - 1
[4,4]
=> 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
[4,3,1]
=> 1010010 => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15 - 1
[4,2,2]
=> 1001100 => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20 - 1
[4,2,1,1]
=> 10010110 => [1,3,2,1,2] => ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 45 - 1
[3,3,2]
=> 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[3,3,1,1]
=> 1100110 => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 - 1
[3,2,2,1]
=> 1011010 => [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15 - 1
[3,2,1,1,1]
=> 10101110 => [1,2,2,1,1,2] => ([(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 24 - 1
[2,2,2,2]
=> 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 1110110 => [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 - 1
[2,2,1,1,1,1]
=> 11011110 => [1,1,2,1,1,1,2] => ([(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 - 1
[6,3]
=> 10001000 => [1,4,4] => ([(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 20 - 1
[5,4]
=> 1010000 => [1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 - 1
[5,3,1]
=> 10010010 => [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 45 - 1
[5,2,2]
=> 10001100 => [1,4,1,3] => ([(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 50 - 1
[4,4,1]
=> 1100010 => [1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 - 1
[4,3,2]
=> 1010100 => [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20 - 1
[3,3,3]
=> 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000068
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000068: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 10%●distinct values known / distinct values provided: 5%
Mp00262: Binary words —poset of factors⟶ Posets
St000068: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 10%●distinct values known / distinct values provided: 5%
Values
[1]
=> 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2]
=> 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,1]
=> 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3]
=> 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
[2,1]
=> 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[1,1,1]
=> 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
[4]
=> 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[3,1]
=> 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
[2,2]
=> 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1
[2,1,1]
=> 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
[1,1,1,1]
=> 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[5]
=> 100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1
[4,1]
=> 100010 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 4
[3,2]
=> 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
[3,1,1]
=> 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ? = 6
[2,2,1]
=> 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[2,1,1,1]
=> 101110 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 4
[1,1,1,1,1]
=> 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1
[6]
=> 1000000 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 1
[5,1]
=> 1000010 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 5
[4,2]
=> 100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 6
[4,1,1]
=> 1000110 => ([(0,4),(0,5),(1,13),(1,20),(2,3),(2,14),(2,21),(3,8),(3,16),(4,1),(4,17),(4,18),(5,2),(5,17),(5,18),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,19),(16,10),(16,19),(17,20),(17,21),(18,13),(18,14),(19,11),(19,12),(20,7),(20,15),(21,15),(21,16)],22)
=> ? = 10
[3,3]
=> 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[3,2,1]
=> 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 8
[3,1,1,1]
=> 1001110 => ([(0,4),(0,5),(1,13),(1,20),(2,3),(2,14),(2,21),(3,8),(3,16),(4,1),(4,17),(4,18),(5,2),(5,17),(5,18),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,19),(16,10),(16,19),(17,20),(17,21),(18,13),(18,14),(19,11),(19,12),(20,7),(20,15),(21,15),(21,16)],22)
=> ? = 10
[2,2,2]
=> 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[2,2,1,1]
=> 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 3
[2,1,1,1,1]
=> 1011110 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 5
[1,1,1,1,1,1]
=> 1111110 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 1
[7]
=> 10000000 => ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ? = 1
[6,1]
=> 10000010 => ([(0,5),(0,6),(1,4),(1,11),(1,20),(2,16),(2,22),(3,2),(3,17),(3,23),(4,3),(4,15),(4,21),(5,18),(5,19),(6,1),(6,18),(6,19),(8,9),(9,13),(10,8),(11,15),(12,10),(13,7),(14,7),(15,17),(16,14),(17,16),(18,11),(18,12),(19,12),(19,20),(20,10),(20,21),(21,8),(21,23),(22,13),(22,14),(23,9),(23,22)],24)
=> ? = 6
[5,2]
=> 1000100 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 10
[5,1,1]
=> 10000110 => ([(0,5),(0,6),(1,4),(1,16),(1,26),(2,17),(2,25),(3,10),(3,22),(4,3),(4,8),(4,18),(5,1),(5,20),(5,21),(6,2),(6,20),(6,21),(8,10),(9,11),(10,13),(11,12),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,22),(18,23),(19,11),(19,23),(20,25),(20,26),(21,16),(21,17),(22,13),(22,24),(23,12),(23,24),(24,14),(24,15),(25,9),(25,19),(26,18),(26,19)],27)
=> ? = 15
[4,3]
=> 101000 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
[4,2,1]
=> 1001010 => ([(0,2),(0,3),(1,5),(1,12),(2,18),(2,19),(3,1),(3,18),(3,19),(5,6),(6,7),(7,10),(8,11),(9,8),(10,4),(11,4),(12,6),(12,14),(13,9),(13,15),(14,7),(14,16),(15,8),(15,16),(16,10),(16,11),(17,9),(17,14),(17,15),(18,5),(18,13),(18,17),(19,12),(19,13),(19,17)],20)
=> ? = 20
[4,1,1,1]
=> 10001110 => ([(0,5),(0,6),(1,4),(1,17),(1,27),(2,3),(2,16),(2,26),(3,8),(3,19),(4,9),(4,20),(5,2),(5,21),(5,22),(6,1),(6,21),(6,22),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,23),(18,24),(19,10),(19,23),(20,11),(20,24),(21,26),(21,27),(22,16),(22,17),(23,12),(23,25),(24,13),(24,25),(25,14),(25,15),(26,18),(26,19),(27,18),(27,20)],28)
=> ? = 20
[3,3,1]
=> 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 3
[3,2,2]
=> 101100 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 6
[3,2,1,1]
=> 1010110 => ([(0,2),(0,3),(1,5),(1,12),(2,18),(2,19),(3,1),(3,18),(3,19),(5,6),(6,7),(7,10),(8,11),(9,8),(10,4),(11,4),(12,6),(12,14),(13,9),(13,15),(14,7),(14,16),(15,8),(15,16),(16,10),(16,11),(17,9),(17,14),(17,15),(18,5),(18,13),(18,17),(19,12),(19,13),(19,17)],20)
=> ? = 15
[3,1,1,1,1]
=> 10011110 => ([(0,5),(0,6),(1,4),(1,16),(1,26),(2,17),(2,25),(3,10),(3,22),(4,3),(4,8),(4,18),(5,1),(5,20),(5,21),(6,2),(6,20),(6,21),(8,10),(9,11),(10,13),(11,12),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,22),(18,23),(19,11),(19,23),(20,25),(20,26),(21,16),(21,17),(22,13),(22,24),(23,12),(23,24),(24,14),(24,15),(25,9),(25,19),(26,18),(26,19)],27)
=> ? = 15
[2,2,2,1]
=> 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 2
[2,2,1,1,1]
=> 1101110 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 4
[2,1,1,1,1,1]
=> 10111110 => ([(0,5),(0,6),(1,4),(1,11),(1,20),(2,16),(2,22),(3,2),(3,17),(3,23),(4,3),(4,15),(4,21),(5,18),(5,19),(6,1),(6,18),(6,19),(8,9),(9,13),(10,8),(11,15),(12,10),(13,7),(14,7),(15,17),(16,14),(17,16),(18,11),(18,12),(19,12),(19,20),(20,10),(20,21),(21,8),(21,23),(22,13),(22,14),(23,9),(23,22)],24)
=> ? = 6
[1,1,1,1,1,1,1]
=> 11111110 => ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ? = 1
[6,2]
=> 10000100 => ([(0,4),(0,5),(1,3),(1,18),(1,22),(2,14),(2,24),(3,2),(3,13),(3,23),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,14),(14,7),(15,9),(15,17),(16,11),(16,12),(17,10),(17,16),(18,15),(18,23),(19,21),(19,22),(20,18),(20,21),(21,8),(21,15),(22,8),(22,13),(23,17),(23,24),(24,7),(24,16)],25)
=> ? = 15
[5,3]
=> 1001000 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 10
[5,2,1]
=> 10001010 => ([(0,3),(0,4),(1,2),(1,14),(1,22),(2,6),(2,15),(3,23),(3,24),(4,1),(4,23),(4,24),(6,8),(7,9),(8,10),(9,13),(10,12),(11,7),(12,5),(13,5),(14,6),(15,8),(15,19),(16,19),(16,20),(17,11),(17,18),(18,7),(18,20),(19,10),(19,21),(20,9),(20,21),(21,12),(21,13),(22,15),(22,16),(23,17),(23,22),(23,25),(24,14),(24,17),(24,25),(25,11),(25,16),(25,18)],26)
=> ? = 40
[4,4]
=> 110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 1
[4,3,1]
=> 1010010 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 15
[4,2,2]
=> 1001100 => ([(0,3),(0,4),(1,18),(1,20),(2,17),(2,19),(3,1),(3,15),(3,16),(4,2),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,19),(15,20),(16,17),(16,18),(17,13),(17,14),(18,6),(18,13),(19,7),(19,14),(20,6),(20,7)],21)
=> ? = 20
[4,2,1,1]
=> 10010110 => ([(0,3),(0,4),(1,15),(1,25),(2,14),(2,24),(3,2),(3,26),(3,27),(4,1),(4,26),(4,27),(6,8),(7,9),(8,10),(9,11),(10,12),(11,13),(12,5),(13,5),(14,6),(15,7),(16,18),(16,23),(17,19),(17,23),(18,8),(18,21),(19,9),(19,22),(20,12),(20,13),(21,10),(21,20),(22,11),(22,20),(23,21),(23,22),(24,6),(24,18),(25,7),(25,19),(26,16),(26,17),(26,24),(26,25),(27,14),(27,15),(27,16),(27,17)],28)
=> ? = 45
[3,3,2]
=> 110100 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ? = 3
[3,3,1,1]
=> 1100110 => ([(0,3),(0,4),(1,18),(1,20),(2,17),(2,19),(3,1),(3,15),(3,16),(4,2),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,19),(15,20),(16,17),(16,18),(17,13),(17,14),(18,6),(18,13),(19,7),(19,14),(20,6),(20,7)],21)
=> ? = 6
[3,2,2,1]
=> 1011010 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 15
[3,2,1,1,1]
=> 10101110 => ([(0,3),(0,4),(1,2),(1,14),(1,22),(2,6),(2,15),(3,23),(3,24),(4,1),(4,23),(4,24),(6,8),(7,9),(8,10),(9,13),(10,12),(11,7),(12,5),(13,5),(14,6),(15,8),(15,19),(16,19),(16,20),(17,11),(17,18),(18,7),(18,20),(19,10),(19,21),(20,9),(20,21),(21,12),(21,13),(22,15),(22,16),(23,17),(23,22),(23,25),(24,14),(24,17),(24,25),(25,11),(25,16),(25,18)],26)
=> ? = 24
[2,2,2,2]
=> 111100 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 1
[2,2,2,1,1]
=> 1110110 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 3
[2,2,1,1,1,1]
=> 11011110 => ([(0,4),(0,5),(1,3),(1,18),(1,22),(2,14),(2,24),(3,2),(3,13),(3,23),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,14),(14,7),(15,9),(15,17),(16,11),(16,12),(17,10),(17,16),(18,15),(18,23),(19,21),(19,22),(20,18),(20,21),(21,8),(21,15),(22,8),(22,13),(23,17),(23,24),(24,7),(24,16)],25)
=> ? = 5
[6,3]
=> 10001000 => ([(0,3),(0,4),(1,2),(1,22),(1,23),(2,20),(2,21),(3,17),(3,18),(4,1),(4,17),(4,18),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,16),(12,19),(13,8),(13,15),(14,9),(14,15),(15,10),(15,11),(16,13),(16,14),(17,12),(17,22),(18,12),(18,23),(19,7),(19,14),(20,6),(20,13),(21,6),(21,7),(22,16),(22,20),(23,19),(23,21)],24)
=> ? = 20
[5,4]
=> 1010000 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 5
Description
The number of minimal elements in a poset.
Matching statistic: St001207
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 16%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 16%
Values
[1]
=> [[1]]
=> [1] => [1] => ? = 1 - 1
[2]
=> [[1,2]]
=> [1,2] => [1,2] => 0 = 1 - 1
[1,1]
=> [[1],[2]]
=> [2,1] => [1,2] => 0 = 1 - 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 0 = 1 - 1
[2,1]
=> [[1,3],[2]]
=> [2,1,3] => [1,3,2] => 1 = 2 - 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 0 = 1 - 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => 2 = 3 - 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => 0 = 1 - 1
[2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => 2 = 3 - 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 - 1
[4,1]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => ? = 4 - 1
[3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => ? = 3 - 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => ? = 6 - 1
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => ? = 2 - 1
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => ? = 4 - 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => ? = 1 - 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1 - 1
[5,1]
=> [[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => ? = 5 - 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [1,2,5,6,3,4] => ? = 6 - 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,4,5,6,2,3] => ? = 10 - 1
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [1,2,3,4,5,6] => ? = 1 - 1
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,3,6,2,5,4] => ? = 8 - 1
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [1,5,6,2,3,4] => ? = 10 - 1
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [1,2,3,4,5,6] => ? = 1 - 1
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,4,2,6,3,5] => ? = 3 - 1
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [1,6,2,3,4,5] => ? = 5 - 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => ? = 1 - 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 1 - 1
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,3,4,5,6,7,2] => ? = 6 - 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => [1,2,5,6,7,3,4] => ? = 10 - 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [1,4,5,6,7,2,3] => ? = 15 - 1
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => [1,2,3,7,4,5,6] => ? = 4 - 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => [1,3,6,7,2,5,4] => ? = 20 - 1
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [1,5,6,7,2,3,4] => ? = 20 - 1
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => [1,3,4,2,6,7,5] => ? = 3 - 1
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => [1,2,7,3,4,5,6] => ? = 6 - 1
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => [1,4,7,2,6,3,5] => ? = 15 - 1
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => [1,6,7,2,3,4,5] => ? = 15 - 1
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [1,3,2,5,4,7,6] => ? = 2 - 1
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [1,5,2,7,3,4,6] => ? = 4 - 1
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => [1,7,2,3,4,5,6] => ? = 6 - 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => ? = 1 - 1
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [3,4,1,2,5,6,7,8] => [1,2,5,6,7,8,3,4] => ? = 15 - 1
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [4,5,6,1,2,3,7,8] => [1,2,3,7,8,4,5,6] => ? = 10 - 1
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [4,2,5,1,3,6,7,8] => [1,3,6,7,8,2,5,4] => ? = 40 - 1
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [1,2,3,4,5,6,7,8] => ? = 1 - 1
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8] => [1,3,4,8,2,6,7,5] => ? = 15 - 1
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8] => [1,2,7,8,3,4,5,6] => ? = 20 - 1
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8] => [1,4,7,8,2,6,3,5] => ? = 45 - 1
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5] => [1,2,5,3,4,8,6,7] => ? = 3 - 1
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5] => [1,4,5,2,7,8,3,6] => ? = 6 - 1
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8] => [1,3,8,2,5,4,7,6] => ? = 15 - 1
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8] => [1,5,8,2,7,3,4,6] => ? = 24 - 1
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [1,2,3,4,5,6,7,8] => ? = 1 - 1
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => [1,4,2,6,3,8,5,7] => ? = 3 - 1
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => [1,6,2,8,3,4,5,7] => ? = 5 - 1
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> [4,5,6,1,2,3,7,8,9] => [1,2,3,7,8,9,4,5,6] => ? = 20 - 1
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4,9] => [1,2,3,4,9,5,6,7,8] => ? = 5 - 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!