searching the database
Your data matches 96 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000094
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000094: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> 2
[[],[]]
=> 2
[[[]]]
=> 3
[[],[],[]]
=> 2
[[],[[]]]
=> 3
[[[]],[]]
=> 3
[[[],[]]]
=> 3
[[[[]]]]
=> 4
[[],[],[],[]]
=> 2
[[],[],[[]]]
=> 3
[[],[[]],[]]
=> 3
[[],[[],[]]]
=> 3
[[],[[[]]]]
=> 4
[[[]],[],[]]
=> 3
[[[]],[[]]]
=> 3
[[[],[]],[]]
=> 3
[[[[]]],[]]
=> 4
[[[],[],[]]]
=> 3
[[[],[[]]]]
=> 4
[[[[]],[]]]
=> 4
[[[[],[]]]]
=> 4
[[[[[]]]]]
=> 5
[[],[],[],[],[]]
=> 2
[[],[],[],[[]]]
=> 3
[[],[],[[]],[]]
=> 3
[[],[],[[],[]]]
=> 3
[[],[],[[[]]]]
=> 4
[[],[[]],[],[]]
=> 3
[[],[[]],[[]]]
=> 3
[[],[[],[]],[]]
=> 3
[[],[[[]]],[]]
=> 4
[[],[[],[],[]]]
=> 3
[[],[[],[[]]]]
=> 4
[[],[[[]],[]]]
=> 4
[[],[[[],[]]]]
=> 4
[[],[[[[]]]]]
=> 5
[[[]],[],[],[]]
=> 3
[[[]],[],[[]]]
=> 3
[[[]],[[]],[]]
=> 3
[[[]],[[],[]]]
=> 3
[[[]],[[[]]]]
=> 4
[[[],[]],[],[]]
=> 3
[[[[]]],[],[]]
=> 4
[[[],[]],[[]]]
=> 3
[[[[]]],[[]]]
=> 4
[[[],[],[]],[]]
=> 3
[[[],[[]]],[]]
=> 4
[[[[]],[]],[]]
=> 4
[[[[],[]]],[]]
=> 4
[[[[[]]]],[]]
=> 5
Description
The depth of an ordered tree.
Matching statistic: St000166
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000166: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> 1 = 2 - 1
[[],[]]
=> 1 = 2 - 1
[[[]]]
=> 2 = 3 - 1
[[],[],[]]
=> 1 = 2 - 1
[[],[[]]]
=> 2 = 3 - 1
[[[]],[]]
=> 2 = 3 - 1
[[[],[]]]
=> 2 = 3 - 1
[[[[]]]]
=> 3 = 4 - 1
[[],[],[],[]]
=> 1 = 2 - 1
[[],[],[[]]]
=> 2 = 3 - 1
[[],[[]],[]]
=> 2 = 3 - 1
[[],[[],[]]]
=> 2 = 3 - 1
[[],[[[]]]]
=> 3 = 4 - 1
[[[]],[],[]]
=> 2 = 3 - 1
[[[]],[[]]]
=> 2 = 3 - 1
[[[],[]],[]]
=> 2 = 3 - 1
[[[[]]],[]]
=> 3 = 4 - 1
[[[],[],[]]]
=> 2 = 3 - 1
[[[],[[]]]]
=> 3 = 4 - 1
[[[[]],[]]]
=> 3 = 4 - 1
[[[[],[]]]]
=> 3 = 4 - 1
[[[[[]]]]]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> 1 = 2 - 1
[[],[],[],[[]]]
=> 2 = 3 - 1
[[],[],[[]],[]]
=> 2 = 3 - 1
[[],[],[[],[]]]
=> 2 = 3 - 1
[[],[],[[[]]]]
=> 3 = 4 - 1
[[],[[]],[],[]]
=> 2 = 3 - 1
[[],[[]],[[]]]
=> 2 = 3 - 1
[[],[[],[]],[]]
=> 2 = 3 - 1
[[],[[[]]],[]]
=> 3 = 4 - 1
[[],[[],[],[]]]
=> 2 = 3 - 1
[[],[[],[[]]]]
=> 3 = 4 - 1
[[],[[[]],[]]]
=> 3 = 4 - 1
[[],[[[],[]]]]
=> 3 = 4 - 1
[[],[[[[]]]]]
=> 4 = 5 - 1
[[[]],[],[],[]]
=> 2 = 3 - 1
[[[]],[],[[]]]
=> 2 = 3 - 1
[[[]],[[]],[]]
=> 2 = 3 - 1
[[[]],[[],[]]]
=> 2 = 3 - 1
[[[]],[[[]]]]
=> 3 = 4 - 1
[[[],[]],[],[]]
=> 2 = 3 - 1
[[[[]]],[],[]]
=> 3 = 4 - 1
[[[],[]],[[]]]
=> 2 = 3 - 1
[[[[]]],[[]]]
=> 3 = 4 - 1
[[[],[],[]],[]]
=> 2 = 3 - 1
[[[],[[]]],[]]
=> 3 = 4 - 1
[[[[]],[]],[]]
=> 3 = 4 - 1
[[[[],[]]],[]]
=> 3 = 4 - 1
[[[[[]]]],[]]
=> 4 = 5 - 1
Description
The depth minus 1 of an ordered tree.
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to [[St000013]].
Matching statistic: St000528
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00047: Ordered trees —to poset⟶ Posets
St000528: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000528: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
Description
The height of a poset.
This equals the rank of the poset [[St000080]] plus one.
Matching statistic: St001343
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00047: Ordered trees —to poset⟶ Posets
St001343: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001343: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
Description
The dimension of the reduced incidence algebra of a poset.
The reduced incidence algebra of a poset is the subalgebra of the incidence algebra consisting of the elements which assign the same value to any two intervals that are isomorphic to each other as posets.
Thus, this statistic returns the number of non-isomorphic intervals of the poset.
Matching statistic: St000013
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> 1 = 2 - 1
[[],[]]
=> [1,0,1,0]
=> 1 = 2 - 1
[[[]]]
=> [1,1,0,0]
=> 2 = 3 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> 1 = 2 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> 2 = 3 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 3 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 4 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 5 - 1
Description
The height of a Dyck path.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000093
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Matching statistic: St000147
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00047: Ordered trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> [2]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> 5
Description
The largest part of an integer partition.
Matching statistic: St000786
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
Description
The maximal number of occurrences of a colour in a proper colouring of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
Matching statistic: St001337
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Matching statistic: St001338
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5
Description
The upper irredundance number of a graph.
A set $S$ of vertices is irredundant, if there is no vertex in $S$, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of $S$.
The upper irredundance number is the largest size of a maximal irredundant set.
The smallest graph with different upper irredundance number and upper domination number [[St001337]] has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [2].
The following 86 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000062The length of the longest increasing subsequence of the permutation. St000442The maximal area to the right of an up step of a Dyck path. St000451The length of the longest pattern of the form k 1 2. St000527The width of the poset. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St000141The maximum drop size of a permutation. St000306The bounce count of a Dyck path. St000662The staircase size of the code of a permutation. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000010The length of the partition. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000676The number of odd rises of a Dyck path. St000734The last entry in the first row of a standard tableau. St000808The number of up steps of the associated bargraph. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001494The Alon-Tarsi number of a graph. St000011The number of touch points (or returns) of a Dyck path. St000015The number of peaks of a Dyck path. St000172The Grundy number of a graph. St000308The height of the tree associated to a permutation. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000470The number of runs in a permutation. St000542The number of left-to-right-minima of a permutation. St000744The length of the path to the largest entry in a standard Young tableau. St000822The Hadwiger number of the graph. St000877The depth of the binary word interpreted as a path. St001029The size of the core of a graph. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001580The acyclic chromatic number of a graph. St001717The largest size of an interval in a poset. St001963The tree-depth of a graph. St000021The number of descents of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000053The number of valleys of the Dyck path. St000080The rank of the poset. St000245The number of ascents of a permutation. St000272The treewidth of a graph. St000536The pathwidth of a graph. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001277The degeneracy of a graph. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001358The largest degree of a regular subgraph of a graph. St001720The minimal length of a chain of small intervals in a lattice. St001820The size of the image of the pop stack sorting operator. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000730The maximal arc length of a set partition. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001626The number of maximal proper sublattices of a lattice. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000907The number of maximal antichains of minimal length in a poset. St001330The hat guessing number of a graph. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St001589The nesting number of a perfect matching. St001590The crossing number of a perfect matching. St001674The number of vertices of the largest induced star graph in the graph. St000317The cycle descent number of a permutation. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001323The independence gap of a graph. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001875The number of simple modules with projective dimension at most 1. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000299The number of nonisomorphic vertex-induced subtrees. St000983The length of the longest alternating subword. St001578The minimal number of edges to add or remove to make a graph a line graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!