searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000203
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000203: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> 1
[.,[.,.]]
=> 2
[[.,.],.]
=> 2
[.,[.,[.,.]]]
=> 3
[.,[[.,.],.]]
=> 2
[[.,.],[.,.]]
=> 3
[[.,[.,.]],.]
=> 2
[[[.,.],.],.]
=> 3
[.,[.,[.,[.,.]]]]
=> 4
[.,[.,[[.,.],.]]]
=> 3
[.,[[.,.],[.,.]]]
=> 3
[.,[[.,[.,.]],.]]
=> 2
[.,[[[.,.],.],.]]
=> 2
[[.,.],[.,[.,.]]]
=> 4
[[.,.],[[.,.],.]]
=> 3
[[.,[.,.]],[.,.]]
=> 3
[[[.,.],.],[.,.]]
=> 4
[[.,[.,[.,.]]],.]
=> 2
[[.,[[.,.],.]],.]
=> 2
[[[.,.],[.,.]],.]
=> 3
[[[.,[.,.]],.],.]
=> 3
[[[[.,.],.],.],.]
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> 5
[.,[.,[.,[[.,.],.]]]]
=> 4
[.,[.,[[.,.],[.,.]]]]
=> 4
[.,[.,[[.,[.,.]],.]]]
=> 3
[.,[.,[[[.,.],.],.]]]
=> 3
[.,[[.,.],[.,[.,.]]]]
=> 4
[.,[[.,.],[[.,.],.]]]
=> 3
[.,[[.,[.,.]],[.,.]]]
=> 3
[.,[[[.,.],.],[.,.]]]
=> 3
[.,[[.,[.,[.,.]]],.]]
=> 2
[.,[[.,[[.,.],.]],.]]
=> 2
[.,[[[.,.],[.,.]],.]]
=> 2
[.,[[[.,[.,.]],.],.]]
=> 2
[.,[[[[.,.],.],.],.]]
=> 2
[[.,.],[.,[.,[.,.]]]]
=> 5
[[.,.],[.,[[.,.],.]]]
=> 4
[[.,.],[[.,.],[.,.]]]
=> 4
[[.,.],[[.,[.,.]],.]]
=> 3
[[.,.],[[[.,.],.],.]]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> 4
[[.,[.,.]],[[.,.],.]]
=> 3
[[[.,.],.],[.,[.,.]]]
=> 5
[[[.,.],.],[[.,.],.]]
=> 4
[[.,[.,[.,.]]],[.,.]]
=> 3
[[.,[[.,.],.]],[.,.]]
=> 3
[[[.,.],[.,.]],[.,.]]
=> 4
[[[.,[.,.]],.],[.,.]]
=> 4
[[[[.,.],.],.],[.,.]]
=> 5
Description
The number of external nodes of a binary tree.
That is, the number of nodes that can be reached from the root by only left steps or only right steps, plus $1$ for the root node itself. A counting formula for the number of external node in all binary trees of size $n$ can be found in [1].
Matching statistic: St000234
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 64%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 64%
Values
[.,.]
=> [1] => [1] => [] => ? = 1 - 2
[.,[.,.]]
=> [2,1] => [2,1] => [1] => 0 = 2 - 2
[[.,.],.]
=> [1,2] => [1,2] => [1] => 0 = 2 - 2
[.,[.,[.,.]]]
=> [3,2,1] => [3,1,2] => [1,2] => 1 = 3 - 2
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [2,1] => 0 = 2 - 2
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,2] => 1 = 3 - 2
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1] => 0 = 2 - 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2] => 1 = 3 - 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,1,2,3] => [1,2,3] => 2 = 4 - 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,3,2] => 1 = 3 - 2
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,1,3] => [2,1,3] => 1 = 3 - 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => [3,2,1] => 0 = 2 - 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1] => 0 = 2 - 2
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,2,3] => 2 = 4 - 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => [1,3,2] => 1 = 3 - 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => [2,1,3] => 1 = 3 - 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3] => 2 = 4 - 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,1,2,4] => [3,1,2] => 0 = 2 - 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1] => 0 = 2 - 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2] => 1 = 3 - 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3] => 1 = 3 - 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3] => 2 = 4 - 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,4,3] => [1,2,4,3] => 2 = 4 - 2
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,1,3,2,4] => [1,3,2,4] => 2 = 4 - 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,1,4,3,2] => [1,4,3,2] => 1 = 3 - 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,1,3,4,2] => [1,3,4,2] => 1 = 3 - 2
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,2,1,3,4] => [2,1,3,4] => 2 = 4 - 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [5,2,1,4,3] => [2,1,4,3] => 1 = 3 - 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [5,3,2,1,4] => [3,2,1,4] => 1 = 3 - 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,1,4] => [2,3,1,4] => 1 = 3 - 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,2,3,1] => [4,2,3,1] => 0 = 2 - 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => [4,3,2,1] => 0 = 2 - 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => [2,4,3,1] => 0 = 2 - 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => [3,2,4,1] => 0 = 2 - 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1] => 0 = 2 - 2
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,5,2,4,3] => [1,2,4,3] => 2 = 4 - 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,5,3,2,4] => [1,3,2,4] => 2 = 4 - 2
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,4,3,2] => 1 = 3 - 2
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,2] => 1 = 3 - 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,3,4] => 2 = 4 - 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,3] => 1 = 3 - 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,3,4] => 3 = 5 - 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,3] => 2 = 4 - 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,4] => 1 = 3 - 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,4] => 1 = 3 - 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,4] => 2 = 4 - 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,4] => 2 = 4 - 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4] => 3 = 5 - 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3] => 0 = 2 - 2
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> [2,4,3,8,7,6,5,1] => [8,2,4,3,1,5,6,7] => ? => ? = 5 - 2
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> [2,4,3,7,8,6,5,1] => [8,2,4,3,1,5,7,6] => ? => ? = 4 - 2
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> [2,4,3,6,8,7,5,1] => [8,2,4,3,1,6,5,7] => ? => ? = 4 - 2
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> [2,4,3,7,6,8,5,1] => [8,2,4,3,1,7,6,5] => ? => ? = 3 - 2
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> [2,4,3,6,7,8,5,1] => [8,2,4,3,1,6,7,5] => ? => ? = 3 - 2
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> [2,3,5,4,7,8,6,1] => [8,2,3,5,4,1,7,6] => ? => ? = 3 - 2
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> [2,4,3,5,7,8,6,1] => [8,2,4,3,5,1,7,6] => ? => ? = 3 - 2
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> [2,4,3,6,5,8,7,1] => [8,2,4,3,6,5,1,7] => ? => ? = 3 - 2
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> [3,5,4,2,6,8,7,1] => [8,5,3,2,4,6,1,7] => ? => ? = 3 - 2
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> [3,5,4,7,6,2,8,1] => [8,7,3,5,4,2,6,1] => ? => ? = 2 - 2
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> [4,6,5,3,7,2,8,1] => [8,7,6,4,3,5,2,1] => ? => ? = 2 - 2
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [3,4,5,2,6,7,8,1] => [8,5,3,4,2,6,7,1] => ? => ? = 2 - 2
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> [2,3,5,4,6,7,8,1] => [8,2,3,5,4,6,7,1] => ? => ? = 2 - 2
[.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [4,3,2,5,6,7,8,1] => [8,4,2,3,5,6,7,1] => ? => ? = 2 - 2
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [3,4,2,5,6,7,8,1] => [8,4,3,2,5,6,7,1] => ? => ? = 2 - 2
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [2,4,3,5,6,7,8,1] => [8,2,4,3,5,6,7,1] => ? => ? = 2 - 2
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [3,2,4,5,6,7,8,1] => [8,3,2,4,5,6,7,1] => ? => ? = 2 - 2
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,1] => [8,2,3,4,5,6,7,1] => ? => ? = 2 - 2
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => [1,8,2,3,4,7,6,5] => ? => ? = 6 - 2
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => [1,8,2,3,4,6,7,5] => ? => ? = 6 - 2
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => [1,8,2,3,5,4,6,7] => ? => ? = 7 - 2
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => [1,8,2,3,7,5,6,4] => ? => ? = 5 - 2
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,3,6,5,8,7,4,2] => [1,8,3,2,6,5,4,7] => ? => ? = 5 - 2
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> [1,3,5,6,7,8,4,2] => [1,8,3,2,5,6,7,4] => ? => ? = 4 - 2
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,4,3,7,8,6,5,2] => [1,8,4,3,2,5,7,6] => ? => ? = 5 - 2
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,4,3,6,8,7,5,2] => [1,8,4,3,2,6,5,7] => ? => ? = 5 - 2
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> [1,4,3,6,7,8,5,2] => [1,8,4,3,2,6,7,5] => ? => ? = 4 - 2
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> [1,5,4,3,8,7,6,2] => [1,8,5,3,4,2,6,7] => ? => ? = 5 - 2
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> [1,3,4,5,7,8,6,2] => [1,8,3,4,5,2,7,6] => ? => ? = 4 - 2
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,3,4,6,5,8,7,2] => [1,8,3,4,6,5,2,7] => ? => ? = 4 - 2
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,3,5,4,6,8,7,2] => [1,8,3,5,4,6,2,7] => ? => ? = 4 - 2
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> [1,4,3,5,6,8,7,2] => [1,8,4,3,5,6,2,7] => ? => ? = 4 - 2
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> [1,3,4,6,7,5,8,2] => [1,8,3,4,7,6,5,2] => ? => ? = 3 - 2
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> [1,3,5,4,7,6,8,2] => [1,8,3,5,4,7,6,2] => ? => ? = 3 - 2
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> [1,3,4,5,6,7,8,2] => [1,8,3,4,5,6,7,2] => ? => ? = 3 - 2
[[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
=> [2,1,6,5,8,7,4,3] => [2,1,8,3,6,5,4,7] => ? => ? = 5 - 2
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> [2,1,5,6,7,8,4,3] => [2,1,8,3,5,6,7,4] => ? => ? = 4 - 2
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> [2,1,4,7,8,6,5,3] => [2,1,8,4,3,5,7,6] => ? => ? = 5 - 2
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> [2,1,4,6,7,8,5,3] => [2,1,8,4,3,6,7,5] => ? => ? = 4 - 2
[[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> [2,1,5,4,8,7,6,3] => [2,1,8,5,4,3,6,7] => ? => ? = 5 - 2
[[.,[.,.]],[[[.,.],[.,.]],[.,.]]]
=> [2,1,4,6,5,8,7,3] => [2,1,8,4,6,5,3,7] => ? => ? = 4 - 2
[[.,[.,.]],[[[.,[.,.]],.],[.,.]]]
=> [2,1,5,4,6,8,7,3] => [2,1,8,5,4,6,3,7] => ? => ? = 4 - 2
[[.,[.,.]],[[[[.,.],.],.],[.,.]]]
=> [2,1,4,5,6,8,7,3] => [2,1,8,4,5,6,3,7] => ? => ? = 4 - 2
[[.,[.,.]],[[.,[[.,.],[.,.]]],.]]
=> [2,1,5,7,6,4,8,3] => [2,1,8,7,5,4,6,3] => ? => ? = 3 - 2
[[.,[.,.]],[[[.,.],[[.,.],.]],.]]
=> [2,1,4,6,7,5,8,3] => [2,1,8,4,7,6,5,3] => ? => ? = 3 - 2
[[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [2,1,5,4,7,6,8,3] => [2,1,8,5,4,7,6,3] => [2,1,5,4,7,6,3] => ? = 3 - 2
[[.,[.,.]],[[[[[.,.],.],.],.],.]]
=> [2,1,4,5,6,7,8,3] => [2,1,8,4,5,6,7,3] => ? => ? = 3 - 2
[[.,[.,[.,.]]],[.,[.,[[.,.],.]]]]
=> [3,2,1,7,8,6,5,4] => [3,1,2,8,4,5,7,6] => ? => ? = 5 - 2
[[.,[.,[.,.]]],[.,[[.,.],[.,.]]]]
=> [3,2,1,6,8,7,5,4] => [3,1,2,8,4,6,5,7] => ? => ? = 5 - 2
Description
The number of global ascents of a permutation.
The global ascents are the integers $i$ such that
$$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i < k \leq n: \pi(j) < \pi(k)\}.$$
Equivalently, by the pigeonhole principle,
$$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i: \pi(j) \leq i \}.$$
For $n > 1$ it can also be described as an occurrence of the mesh pattern
$$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$
or equivalently
$$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$
see [3].
According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St000056
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 55%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 55%
Values
[.,.]
=> [1] => [1] => [] => ? = 1 - 1
[.,[.,.]]
=> [2,1] => [2,1] => [1] => 1 = 2 - 1
[[.,.],.]
=> [1,2] => [1,2] => [1] => 1 = 2 - 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,1,2] => [1,2] => 2 = 3 - 1
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [2,1] => 1 = 2 - 1
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,2] => 2 = 3 - 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1] => 1 = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2] => 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,1,2,3] => [1,2,3] => 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,3,2] => 2 = 3 - 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,1,3] => [2,1,3] => 2 = 3 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => [3,2,1] => 1 = 2 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1] => 1 = 2 - 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,2,3] => 3 = 4 - 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => [1,3,2] => 2 = 3 - 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => [2,1,3] => 2 = 3 - 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3] => 3 = 4 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,1,2,4] => [3,1,2] => 1 = 2 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1] => 1 = 2 - 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2] => 2 = 3 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3] => 2 = 3 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3] => 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,1,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,1,4,3,2] => [1,4,3,2] => 2 = 3 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,1,3,4,2] => [1,3,4,2] => 2 = 3 - 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,2,1,3,4] => [2,1,3,4] => 3 = 4 - 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [5,2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [5,3,2,1,4] => [3,2,1,4] => 2 = 3 - 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,1,4] => [2,3,1,4] => 2 = 3 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,2,3,1] => [4,2,3,1] => 1 = 2 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => [4,3,2,1] => 1 = 2 - 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => [2,4,3,1] => 1 = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => [3,2,4,1] => 1 = 2 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1] => 1 = 2 - 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,5,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,5,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,4,3,2] => 2 = 3 - 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,2] => 2 = 3 - 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,3,4] => 3 = 4 - 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,3] => 2 = 3 - 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,3,4] => 4 = 5 - 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,3] => 3 = 4 - 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,4] => 2 = 3 - 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,4] => 2 = 3 - 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,4] => 3 = 4 - 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,4] => 3 = 4 - 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4] => 4 = 5 - 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3] => 1 = 2 - 1
[.,[[[.,.],[.,.]],[.,[.,[.,.]]]]]
=> [2,4,3,8,7,6,5,1] => [8,2,4,3,1,5,6,7] => ? => ? = 5 - 1
[.,[[[.,.],[.,.]],[.,[[.,.],.]]]]
=> [2,4,3,7,8,6,5,1] => [8,2,4,3,1,5,7,6] => ? => ? = 4 - 1
[.,[[[.,.],[.,.]],[[.,.],[.,.]]]]
=> [2,4,3,6,8,7,5,1] => [8,2,4,3,1,6,5,7] => ? => ? = 4 - 1
[.,[[[.,.],[.,.]],[[.,[.,.]],.]]]
=> [2,4,3,7,6,8,5,1] => [8,2,4,3,1,7,6,5] => ? => ? = 3 - 1
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> [2,4,3,6,7,8,5,1] => [8,2,4,3,1,6,7,5] => ? => ? = 3 - 1
[.,[[[[.,.],.],[.,.]],[[.,.],.]]]
=> [2,3,5,4,7,8,6,1] => [8,2,3,5,4,1,7,6] => ? => ? = 3 - 1
[.,[[[[.,.],[.,.]],.],[[.,.],.]]]
=> [2,4,3,5,7,8,6,1] => [8,2,4,3,5,1,7,6] => ? => ? = 3 - 1
[.,[[[[.,.],[.,.]],[.,.]],[.,.]]]
=> [2,4,3,6,5,8,7,1] => [8,2,4,3,6,5,1,7] => ? => ? = 3 - 1
[.,[[[.,[[.,.],[.,.]]],.],[.,.]]]
=> [3,5,4,2,6,8,7,1] => [8,5,3,2,4,6,1,7] => ? => ? = 3 - 1
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> [3,5,4,7,6,2,8,1] => [8,7,3,5,4,2,6,1] => ? => ? = 2 - 1
[.,[[.,[[.,[[.,.],[.,.]]],.]],.]]
=> [4,6,5,3,7,2,8,1] => [8,7,6,4,3,5,2,1] => ? => ? = 2 - 1
[.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,7,2,8,1] => [8,7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ? = 2 - 1
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [4,3,6,5,7,2,8,1] => [8,7,4,3,6,5,2,1] => [7,4,3,6,5,2,1] => ? = 2 - 1
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [3,2,6,5,7,4,8,1] => [8,3,2,7,6,5,4,1] => [3,2,7,6,5,4,1] => ? = 2 - 1
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [4,3,5,2,7,6,8,1] => [8,5,4,3,2,7,6,1] => [5,4,3,2,7,6,1] => ? = 2 - 1
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [3,2,5,4,7,6,8,1] => [8,3,2,5,4,7,6,1] => [3,2,5,4,7,6,1] => ? = 2 - 1
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [3,4,5,2,6,7,8,1] => [8,5,3,4,2,6,7,1] => ? => ? = 2 - 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> [2,3,5,4,6,7,8,1] => [8,2,3,5,4,6,7,1] => ? => ? = 2 - 1
[.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [4,3,2,5,6,7,8,1] => [8,4,2,3,5,6,7,1] => ? => ? = 2 - 1
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [3,4,2,5,6,7,8,1] => [8,4,3,2,5,6,7,1] => ? => ? = 2 - 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [2,4,3,5,6,7,8,1] => [8,2,4,3,5,6,7,1] => ? => ? = 2 - 1
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [3,2,4,5,6,7,8,1] => [8,3,2,4,5,6,7,1] => ? => ? = 2 - 1
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,1] => [8,2,3,4,5,6,7,1] => ? => ? = 2 - 1
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,8,7,6,5,4,3,2] => [1,8,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => [1,8,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 7 - 1
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => [1,8,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ? = 7 - 1
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => [1,8,2,3,4,7,6,5] => ? => ? = 6 - 1
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => [1,8,2,3,4,6,7,5] => ? => ? = 6 - 1
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => [1,8,2,3,5,4,6,7] => ? => ? = 7 - 1
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => [1,8,2,3,7,5,6,4] => ? => ? = 5 - 1
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> [1,3,5,7,8,6,4,2] => [1,8,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ? = 5 - 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,3,6,5,8,7,4,2] => [1,8,3,2,6,5,4,7] => ? => ? = 5 - 1
[[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> [1,3,6,7,5,8,4,2] => [1,8,3,2,7,6,5,4] => [1,3,2,7,6,5,4] => ? = 4 - 1
[[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> [1,3,5,6,7,8,4,2] => [1,8,3,2,5,6,7,4] => ? => ? = 4 - 1
[[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,4,3,7,8,6,5,2] => [1,8,4,3,2,5,7,6] => ? => ? = 5 - 1
[[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,4,3,6,8,7,5,2] => [1,8,4,3,2,6,5,7] => ? => ? = 5 - 1
[[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> [1,4,3,6,7,8,5,2] => [1,8,4,3,2,6,7,5] => ? => ? = 4 - 1
[[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> [1,5,4,3,8,7,6,2] => [1,8,5,3,4,2,6,7] => ? => ? = 5 - 1
[[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> [1,4,5,3,7,8,6,2] => [1,8,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 4 - 1
[[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> [1,3,4,5,7,8,6,2] => [1,8,3,4,5,2,7,6] => ? => ? = 4 - 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,3,4,6,5,8,7,2] => [1,8,3,4,6,5,2,7] => ? => ? = 4 - 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,3,5,4,6,8,7,2] => [1,8,3,5,4,6,2,7] => ? => ? = 4 - 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> [1,4,3,5,6,8,7,2] => [1,8,4,3,5,6,2,7] => ? => ? = 4 - 1
[[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> [1,4,6,7,5,3,8,2] => [1,8,7,4,3,6,5,2] => [1,7,4,3,6,5,2] => ? = 3 - 1
[[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> [1,5,6,4,7,3,8,2] => [1,8,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ? = 3 - 1
[[.,.],[[[[.,.],.],[[.,.],.]],.]]
=> [1,3,4,6,7,5,8,2] => [1,8,3,4,7,6,5,2] => ? => ? = 3 - 1
[[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> [1,3,5,4,7,6,8,2] => [1,8,3,5,4,7,6,2] => ? => ? = 3 - 1
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> [1,3,4,5,6,7,8,2] => [1,8,3,4,5,6,7,2] => ? => ? = 3 - 1
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> [2,1,5,7,8,6,4,3] => [2,1,8,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 5 - 1
Description
The decomposition (or block) number of a permutation.
For $\pi \in \mathcal{S}_n$, this is given by
$$\#\big\{ 1 \leq k \leq n : \{\pi_1,\ldots,\pi_k\} = \{1,\ldots,k\} \big\}.$$
This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum.
This is one plus [[St000234]].
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 45%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 45%
Values
[.,.]
=> [1] => [.,.]
=> ([],1)
=> ? = 1
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 2
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 2
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[[[.,.],.],.],[.,[.,.]]]
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 45%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 45%
Values
[.,.]
=> [1] => [.,.]
=> ([],1)
=> ? = 1 - 1
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 2 - 1
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 2 - 1
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 - 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 - 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 - 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 - 1
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 - 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 - 1
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[[[[.,.],.],.],[.,[.,.]]]
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!