searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000234
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [2,1] => [2,1] => [1] => 0
[[.,.],.]
=> [1,2] => [1,2] => [1] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,1,2] => [1,2] => 1
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [2,1] => 0
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,2] => 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2] => 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,1,2,3] => [1,2,3] => 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,3,2] => 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,1,3] => [2,1,3] => 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => [3,2,1] => 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1] => 0
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,2,3] => 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => [1,3,2] => 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => [2,1,3] => 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3] => 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,1,2,4] => [3,1,2] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1] => 0
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2] => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3] => 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,1,2,3,4] => [1,2,3,4] => 3
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,4,3] => [1,2,4,3] => 2
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,1,3,2,4] => [1,3,2,4] => 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,1,4,3,2] => [1,4,3,2] => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,1,3,4,2] => [1,3,4,2] => 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,2,1,3,4] => [2,1,3,4] => 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [5,2,1,4,3] => [2,1,4,3] => 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [5,3,2,1,4] => [3,2,1,4] => 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,1,4] => [2,3,1,4] => 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,2,3,1] => [4,2,3,1] => 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => [4,3,2,1] => 0
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => [2,4,3,1] => 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => [3,2,4,1] => 0
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1] => 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,2,3,4] => 3
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,5,2,4,3] => [1,2,4,3] => 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,5,3,2,4] => [1,3,2,4] => 2
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,4,3,2] => 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,2] => 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,3,4] => 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,3] => 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,3,4] => 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,3] => 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,4] => 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,4] => 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,4] => 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,4] => 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4] => 3
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3] => 0
Description
The number of global ascents of a permutation.
The global ascents are the integers $i$ such that
$$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i < k \leq n: \pi(j) < \pi(k)\}.$$
Equivalently, by the pigeonhole principle,
$$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i: \pi(j) \leq i \}.$$
For $n > 1$ it can also be described as an occurrence of the mesh pattern
$$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$
or equivalently
$$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$
see [3].
According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St000203
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
St000203: Binary trees ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
St000203: Binary trees ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [[.,.],.]
=> 2 = 0 + 2
[[.,.],.]
=> [.,[.,.]]
=> 2 = 0 + 2
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> 3 = 1 + 2
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> 2 = 0 + 2
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> 3 = 1 + 2
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> 2 = 0 + 2
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> 3 = 1 + 2
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> 4 = 2 + 2
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> 3 = 1 + 2
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> 3 = 1 + 2
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> 2 = 0 + 2
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> 2 = 0 + 2
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> 4 = 2 + 2
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> 3 = 1 + 2
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> 3 = 1 + 2
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> 4 = 2 + 2
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> 2 = 0 + 2
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> 2 = 0 + 2
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> 3 = 1 + 2
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> 3 = 1 + 2
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> 4 = 2 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> 5 = 3 + 2
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> 4 = 2 + 2
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> 4 = 2 + 2
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> 3 = 1 + 2
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> 3 = 1 + 2
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> 4 = 2 + 2
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> 3 = 1 + 2
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> 3 = 1 + 2
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> 3 = 1 + 2
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> 2 = 0 + 2
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> 2 = 0 + 2
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 2 = 0 + 2
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> 2 = 0 + 2
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> 2 = 0 + 2
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> 5 = 3 + 2
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> 4 = 2 + 2
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> 4 = 2 + 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> 3 = 1 + 2
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> 3 = 1 + 2
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> 4 = 2 + 2
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> 3 = 1 + 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> 5 = 3 + 2
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> 4 = 2 + 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> 3 = 1 + 2
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> 3 = 1 + 2
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> 4 = 2 + 2
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> 4 = 2 + 2
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> 5 = 3 + 2
[[.,[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],.]]
=> 2 = 0 + 2
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> ? = 5 + 2
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [[[[[[.,[[.,.],.]],.],.],.],.],.]
=> ? = 4 + 2
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [[[[[[.,.],[[.,.],.]],.],.],.],.]
=> ? = 4 + 2
[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [[[[[.,[[[.,.],.],.]],.],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [[[[[.,[[.,[.,.]],.]],.],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [[[[[.,[[.,.],[.,.]]],.],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [[[[[.,[.,[[.,.],.]]],.],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [[[[[[.,.],[.,.]],[.,.]],.],.],.]
=> ? = 4 + 2
[.,[.,[.,[[.,.],[[.,[.,.]],.]]]]]
=> [[[[[.,[[.,.],.]],[.,.]],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[[.,[[.,.],.]],[.,.]]]]]
=> [[[[[.,.],[[.,[.,.]],.]],.],.],.]
=> ? = 3 + 2
[.,[.,[.,[[[[.,.],.],.],[.,.]]]]]
=> [[[[[.,.],[.,[.,[.,.]]]],.],.],.]
=> ? = 3 + 2
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [[[[[[.,[.,.]],.],.],[.,.]],.],.]
=> ? = 4 + 2
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [[[[[.,[[.,.],.]],.],[.,.]],.],.]
=> ? = 3 + 2
[.,[.,[[.,.],[[.,.],[[.,.],.]]]]]
=> [[[[[.,[.,.]],[.,.]],[.,.]],.],.]
=> ? = 3 + 2
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [[[[[.,.],[[.,.],.]],[.,.]],.],.]
=> ? = 3 + 2
[.,[.,[[.,[.,.]],[.,[[.,.],.]]]]]
=> [[[[[.,[.,.]],.],[[.,.],.]],.],.]
=> ? = 3 + 2
[.,[.,[[.,[.,.]],[[.,.],[.,.]]]]]
=> [[[[[.,.],[.,.]],[[.,.],.]],.],.]
=> ? = 3 + 2
[.,[.,[[.,[.,.]],[[.,[.,.]],.]]]]
=> [[[[.,[[.,.],.]],[[.,.],.]],.],.]
=> ? = 2 + 2
[.,[.,[[[.,.],.],[[.,[.,.]],.]]]]
=> [[[[.,[[.,.],.]],[.,[.,.]]],.],.]
=> ? = 2 + 2
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],[.,[.,.]]],.],.]
=> ? = 2 + 2
[.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [[[[.,[.,.]],[[[.,.],.],.]],.],.]
=> ? = 2 + 2
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> ? = 1 + 2
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> ? = 5 + 2
[.,[[.,.],[.,[[.,[.,.]],[.,.]]]]]
=> [[[[[.,.],[[.,.],.]],.],[.,.]],.]
=> ? = 3 + 2
[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [[[[[.,.],[.,.]],[.,.]],[.,.]],.]
=> ? = 3 + 2
[.,[[.,.],[[.,[.,.]],[[.,.],.]]]]
=> [[[[.,[.,.]],[[.,.],.]],[.,.]],.]
=> ? = 2 + 2
[.,[[.,[.,.]],[.,[[.,.],[.,.]]]]]
=> [[[[[.,.],[.,.]],.],[[.,.],.]],.]
=> ? = 3 + 2
[.,[[[.,.],.],[.,[.,[.,[.,.]]]]]]
=> [[[[[[.,.],.],.],.],[.,[.,.]]],.]
=> ? = 4 + 2
[.,[[[.,.],.],[[.,.],[[.,.],.]]]]
=> [[[[.,[.,.]],[.,.]],[.,[.,.]]],.]
=> ? = 2 + 2
[.,[[[.,.],.],[[.,[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],.]],[.,[.,.]]],.]
=> ? = 1 + 2
[.,[[.,[[.,.],.]],[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],[[.,[.,.]],.]],.]
=> ? = 3 + 2
[.,[[.,[[.,.],.]],[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],[[.,[.,.]],.]],.]
=> ? = 2 + 2
[.,[[[[.,.],.],.],[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],[.,[.,[.,.]]]],.]
=> ? = 3 + 2
[.,[[.,[[.,[[.,.],.]],.]],[.,.]]]
=> [[[.,.],[[.,[[.,[.,.]],.]],.]],.]
=> ? = 1 + 2
[.,[[.,[[.,[[[.,.],.],.]],.]],.]]
=> [[.,[[.,[[.,[.,[.,.]]],.]],.]],.]
=> ? = 0 + 2
[.,[[.,[[[.,[[.,.],.]],.],.]],.]]
=> [[.,[[.,[.,[[.,[.,.]],.]]],.]],.]
=> ? = 0 + 2
[.,[[.,[[[[.,.],[.,.]],.],.]],.]]
=> [[.,[[.,[.,[[.,.],[.,.]]]],.]],.]
=> ? = 0 + 2
[.,[[[.,.],[[[.,.],[.,.]],.]],.]]
=> [[.,[[.,[[.,.],[.,.]]],[.,.]]],.]
=> ? = 0 + 2
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [[[[[.,.],[.,.]],[.,.]],.],[.,.]]
=> ? = 4 + 2
[[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> ? = 1 + 2
[[.,.],[[.,[[.,[.,.]],[.,.]]],.]]
=> [[.,[[[.,.],[[.,.],.]],.]],[.,.]]
=> ? = 1 + 2
[[.,.],[[.,[[[.,.],.],[.,.]]],.]]
=> [[.,[[[.,.],[.,[.,.]]],.]],[.,.]]
=> ? = 1 + 2
[[.,.],[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],[.,.]]
=> ? = 1 + 2
[[.,.],[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],[.,.]]
=> ? = 1 + 2
[[.,.],[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],[.,.]]
=> ? = 1 + 2
[[.,.],[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],[.,.]]
=> ? = 1 + 2
[[.,[.,.]],[.,[.,[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],.],.],[[.,.],.]]
=> ? = 3 + 2
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> [[[.,[.,.]],[.,[.,.]]],[[.,.],.]]
=> ? = 2 + 2
[[.,[.,.]],[[[.,.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,.]]],[[.,.],.]]
=> ? = 1 + 2
Description
The number of external nodes of a binary tree.
That is, the number of nodes that can be reached from the root by only left steps or only right steps, plus $1$ for the root node itself. A counting formula for the number of external node in all binary trees of size $n$ can be found in [1].
Matching statistic: St000056
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 86%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 86%
Values
[.,[.,.]]
=> [2,1] => [2,1] => [1] => 1 = 0 + 1
[[.,.],.]
=> [1,2] => [1,2] => [1] => 1 = 0 + 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,1,2] => [1,2] => 2 = 1 + 1
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [2,1] => 1 = 0 + 1
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,2] => 2 = 1 + 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1] => 1 = 0 + 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2] => 2 = 1 + 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,1,2,3] => [1,2,3] => 3 = 2 + 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,3,2] => 2 = 1 + 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,1,3] => [2,1,3] => 2 = 1 + 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => [3,2,1] => 1 = 0 + 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1] => 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,2,3] => 3 = 2 + 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => [1,3,2] => 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => [2,1,3] => 2 = 1 + 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3] => 3 = 2 + 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,1,2,4] => [3,1,2] => 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1] => 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2] => 2 = 1 + 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3] => 2 = 1 + 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3] => 3 = 2 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,1,2,3,4] => [1,2,3,4] => 4 = 3 + 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,4,3] => [1,2,4,3] => 3 = 2 + 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,1,3,2,4] => [1,3,2,4] => 3 = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,1,4,3,2] => [1,4,3,2] => 2 = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,1,3,4,2] => [1,3,4,2] => 2 = 1 + 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,2,1,3,4] => [2,1,3,4] => 3 = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [5,2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [5,3,2,1,4] => [3,2,1,4] => 2 = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,1,4] => [2,3,1,4] => 2 = 1 + 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,2,3,1] => [4,2,3,1] => 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => [4,3,2,1] => 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => [2,4,3,1] => 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => [3,2,4,1] => 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1] => 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,2,3,4] => 4 = 3 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,5,2,4,3] => [1,2,4,3] => 3 = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,5,3,2,4] => [1,3,2,4] => 3 = 2 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,4,3,2] => 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,2] => 2 = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,3,4] => 3 = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,3] => 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,3,4] => 4 = 3 + 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,3] => 3 = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,4] => 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,4] => 2 = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,4] => 3 = 2 + 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,4] => 3 = 2 + 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4] => 4 = 3 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3] => 1 = 0 + 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [8,7,6,5,4,3,2,1] => [8,1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 6 + 1
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [7,8,6,5,4,3,2,1] => [8,1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 5 + 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [7,6,8,5,4,3,2,1] => [8,1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 4 + 1
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [6,5,8,7,4,3,2,1] => [8,1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 4 + 1
[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [7,6,5,8,4,3,2,1] => [8,1,2,3,7,5,6,4] => [1,2,3,7,5,6,4] => ? = 3 + 1
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [6,7,5,8,4,3,2,1] => [8,1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 3 + 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [5,7,6,8,4,3,2,1] => [8,1,2,3,5,7,6,4] => [1,2,3,5,7,6,4] => ? = 3 + 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [6,5,7,8,4,3,2,1] => [8,1,2,3,6,5,7,4] => [1,2,3,6,5,7,4] => ? = 3 + 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => [8,1,2,3,5,6,7,4] => [1,2,3,5,6,7,4] => ? = 3 + 1
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [4,6,8,7,5,3,2,1] => [8,1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 4 + 1
[.,[.,[.,[[.,.],[[.,[.,.]],.]]]]]
=> [4,7,6,8,5,3,2,1] => [8,1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 3 + 1
[.,[.,[.,[[.,[[.,.],.]],[.,.]]]]]
=> [5,6,4,8,7,3,2,1] => [8,1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 3 + 1
[.,[.,[.,[[[[.,.],.],.],[.,.]]]]]
=> [4,5,6,8,7,3,2,1] => [8,1,2,4,5,6,3,7] => [1,2,4,5,6,3,7] => ? = 3 + 1
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [3,7,8,6,5,4,2,1] => [8,1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => ? = 4 + 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [3,7,6,8,5,4,2,1] => [8,1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => ? = 3 + 1
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [3,5,8,7,6,4,2,1] => [8,1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ? = 4 + 1
[.,[.,[[.,.],[[.,.],[[.,.],.]]]]]
=> [3,5,7,8,6,4,2,1] => [8,1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ? = 3 + 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [3,6,5,8,7,4,2,1] => [8,1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => ? = 3 + 1
[.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> [4,3,8,7,6,5,2,1] => [8,1,4,3,2,5,6,7] => [1,4,3,2,5,6,7] => ? = 4 + 1
[.,[.,[[.,[.,.]],[.,[[.,.],.]]]]]
=> [4,3,7,8,6,5,2,1] => [8,1,4,3,2,5,7,6] => [1,4,3,2,5,7,6] => ? = 3 + 1
[.,[.,[[.,[.,.]],[[.,.],[.,.]]]]]
=> [4,3,6,8,7,5,2,1] => [8,1,4,3,2,6,5,7] => [1,4,3,2,6,5,7] => ? = 3 + 1
[.,[.,[[.,[.,.]],[[.,[.,.]],.]]]]
=> [4,3,7,6,8,5,2,1] => [8,1,4,3,2,7,6,5] => [1,4,3,2,7,6,5] => ? = 2 + 1
[.,[.,[[[.,.],.],[[.,[.,.]],.]]]]
=> [3,4,7,6,8,5,2,1] => [8,1,3,4,2,7,6,5] => [1,3,4,2,7,6,5] => ? = 2 + 1
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [3,4,6,7,8,5,2,1] => [8,1,3,4,2,6,7,5] => [1,3,4,2,6,7,5] => ? = 2 + 1
[.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [5,4,3,7,8,6,2,1] => [8,1,5,3,4,2,7,6] => [1,5,3,4,2,7,6] => ? = 2 + 1
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [3,4,5,6,7,8,2,1] => [8,1,3,4,5,6,7,2] => [1,3,4,5,6,7,2] => ? = 1 + 1
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [2,8,7,6,5,4,3,1] => [8,2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 5 + 1
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [2,6,8,7,5,4,3,1] => [8,2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 4 + 1
[.,[[.,.],[.,[[.,[.,.]],[.,.]]]]]
=> [2,6,5,8,7,4,3,1] => [8,2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => ? = 3 + 1
[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [2,4,6,8,7,5,3,1] => [8,2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 3 + 1
[.,[[.,.],[[.,[.,.]],[[.,.],.]]]]
=> [2,5,4,7,8,6,3,1] => [8,2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => ? = 2 + 1
[.,[[.,[.,.]],[.,[.,[.,[.,.]]]]]]
=> [3,2,8,7,6,5,4,1] => [8,3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => ? = 4 + 1
[.,[[.,[.,.]],[.,[[.,.],[.,.]]]]]
=> [3,2,6,8,7,5,4,1] => [8,3,2,1,4,6,5,7] => [3,2,1,4,6,5,7] => ? = 3 + 1
[.,[[.,[.,.]],[[.,[.,.]],[.,.]]]]
=> [3,2,6,5,8,7,4,1] => [8,3,2,1,6,5,4,7] => [3,2,1,6,5,4,7] => ? = 2 + 1
[.,[[[.,.],.],[.,[.,[.,[.,.]]]]]]
=> [2,3,8,7,6,5,4,1] => [8,2,3,1,4,5,6,7] => [2,3,1,4,5,6,7] => ? = 4 + 1
[.,[[[.,.],.],[[.,.],[[.,.],.]]]]
=> [2,3,5,7,8,6,4,1] => [8,2,3,1,5,4,7,6] => [2,3,1,5,4,7,6] => ? = 2 + 1
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [2,3,5,6,8,7,4,1] => [8,2,3,1,5,6,4,7] => [2,3,1,5,6,4,7] => ? = 2 + 1
[.,[[[.,.],.],[[.,[.,[.,.]]],.]]]
=> [2,3,7,6,5,8,4,1] => [8,2,3,1,7,5,6,4] => [2,3,1,7,5,6,4] => ? = 1 + 1
[.,[[.,[[.,.],.]],[.,[.,[.,.]]]]]
=> [3,4,2,8,7,6,5,1] => [8,4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => ? = 3 + 1
[.,[[.,[[.,.],.]],[.,[[.,.],.]]]]
=> [3,4,2,7,8,6,5,1] => [8,4,3,2,1,5,7,6] => [4,3,2,1,5,7,6] => ? = 2 + 1
[.,[[[[.,.],.],.],[.,[.,[.,.]]]]]
=> [2,3,4,8,7,6,5,1] => [8,2,3,4,1,5,6,7] => [2,3,4,1,5,6,7] => ? = 3 + 1
[.,[[.,[[.,[[.,.],.]],.]],[.,.]]]
=> [4,5,3,6,2,8,7,1] => [8,6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => ? = 1 + 1
[.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,7,2,8,1] => [8,7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ? = 0 + 1
[.,[[.,[[.,[[[.,.],.],.]],.]],.]]
=> [4,5,6,3,7,2,8,1] => [8,7,6,4,5,3,2,1] => [7,6,4,5,3,2,1] => ? = 0 + 1
[.,[[.,[[[.,.],[[.,.],.]],.]],.]]
=> [3,5,6,4,7,2,8,1] => [8,7,3,6,5,4,2,1] => [7,3,6,5,4,2,1] => ? = 0 + 1
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [4,3,6,5,7,2,8,1] => [8,7,4,3,6,5,2,1] => [7,4,3,6,5,2,1] => ? = 0 + 1
[.,[[.,[[[.,[[.,.],.]],.],.]],.]]
=> [4,5,3,6,7,2,8,1] => [8,7,5,4,3,6,2,1] => [7,5,4,3,6,2,1] => ? = 0 + 1
[.,[[.,[[[[.,.],[.,.]],.],.]],.]]
=> [3,5,4,6,7,2,8,1] => [8,7,3,5,4,6,2,1] => [7,3,5,4,6,2,1] => ? = 0 + 1
[.,[[[.,.],[[[.,.],[.,.]],.]],.]]
=> [2,4,6,5,7,3,8,1] => [8,2,7,4,6,5,3,1] => [2,7,4,6,5,3,1] => ? = 0 + 1
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [3,2,6,5,7,4,8,1] => [8,3,2,7,6,5,4,1] => [3,2,7,6,5,4,1] => ? = 0 + 1
Description
The decomposition (or block) number of a permutation.
For $\pi \in \mathcal{S}_n$, this is given by
$$\#\big\{ 1 \leq k \leq n : \{\pi_1,\ldots,\pi_k\} = \{1,\ldots,k\} \big\}.$$
This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum.
This is one plus [[St000234]].
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 71%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 71%
Values
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 0 + 1
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 0 + 1
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 1
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 1
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 1
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 1
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[.,.],.],.],[.,[.,.]]]
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 71%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 71%
Values
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 0 + 2
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 0 + 2
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 2
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 2
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 2
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 2
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 2
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 2
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 2
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[.,.],.],.],[.,[.,.]]]
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!