Your data matches 32 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000243: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 2
[1,3,4,2] => 1
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 2
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 2
[1,2,4,5,3] => 1
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 2
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 1
[1,3,5,2,4] => 2
[1,3,5,4,2] => 1
[1,4,2,3,5] => 2
[1,4,2,5,3] => 2
[1,4,3,2,5] => 2
[1,4,3,5,2] => 2
[1,4,5,2,3] => 2
[1,4,5,3,2] => 1
Description
The number of cyclic valleys and cyclic peaks of a permutation. This is given by the number of indices $i$ such that $\pi_{i-1} > \pi_i < \pi_{i+1}$ with indices considered cyclically. Equivalently, this is the number of indices $i$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$ with indices considered cyclically.
Matching statistic: St000454
Mp00089: Permutations Inverse Kreweras complementPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00011: Binary trees to graphGraphs
St000454: Graphs ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 67%
Values
[1,2] => [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> 1
[2,1] => [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> 1
[1,2,3] => [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[1,3,2] => [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1
[2,1,3] => [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[3,1,2] => [3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(1,2)],3)
=> ? = 1
[3,2,1] => [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[1,2,3,4] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[1,2,4,3] => [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[1,3,2,4] => [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[1,3,4,2] => [4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1
[1,4,2,3] => [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[1,4,3,2] => [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[2,1,3,4] => [1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1
[2,1,4,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[2,3,1,4] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[2,4,1,3] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,4,3,1] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1
[3,1,2,4] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[3,1,4,2] => [4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[3,2,1,4] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[3,2,4,1] => [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[3,4,1,2] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[3,4,2,1] => [3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[4,1,2,3] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[4,1,3,2] => [4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[4,2,1,3] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[4,2,3,1] => [2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[4,3,1,2] => [4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1
[4,3,2,1] => [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[1,2,3,4,5] => [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1
[1,2,3,5,4] => [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1
[1,2,4,3,5] => [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,2,4,5,3] => [2,5,3,4,1] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1
[1,2,5,3,4] => [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,2,5,4,3] => [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1
[1,3,2,4,5] => [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,3,2,5,4] => [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,3,4,2,5] => [4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,3,4,5,2] => [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,3,5,2,4] => [4,2,5,3,1] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,3,5,4,2] => [5,2,4,3,1] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,4,2,3,5] => [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,4,2,5,3] => [3,5,2,4,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,4,3,2,5] => [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,4,3,5,2] => [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,4,5,2,3] => [4,5,2,3,1] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,4,5,3,2] => [5,4,2,3,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,5,2,3,4] => [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,5,2,4,3] => [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[1,3,5,4,6,2] => [6,2,4,3,5,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[1,3,6,4,5,2] => [6,2,4,5,3,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[1,4,5,3,6,2] => [6,4,2,3,5,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[1,4,6,3,5,2] => [6,4,2,5,3,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[1,5,6,3,4,2] => [6,4,5,2,3,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,1,3,5,4,6] => [1,3,5,4,6,2] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,1,3,6,4,5] => [1,3,5,6,4,2] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,1,4,5,3,6] => [1,5,3,4,6,2] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,1,4,6,3,5] => [1,5,3,6,4,2] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,1,5,6,3,4] => [1,5,6,3,4,2] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,4,3,1,5,6] => [1,3,2,5,6,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,4,3,6,5,1] => [1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,5,3,1,4,6] => [1,3,5,2,6,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,5,3,6,4,1] => [1,3,5,2,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,5,4,1,3,6] => [1,5,3,2,6,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,5,4,6,3,1] => [1,5,3,2,4,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,6,3,1,4,5] => [1,3,5,6,2,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,6,3,5,4,1] => [1,3,5,4,2,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,6,4,1,3,5] => [1,5,3,6,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,6,4,5,3,1] => [1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,6,5,1,3,4] => [1,5,6,3,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[4,3,1,5,6,2] => [6,2,1,4,5,3] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[4,3,6,5,1,2] => [6,2,1,4,3,5] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[5,3,1,4,6,2] => [6,2,4,1,5,3] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[5,3,6,4,1,2] => [6,2,4,1,3,5] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[5,4,1,3,6,2] => [6,4,2,1,5,3] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[5,4,6,3,1,2] => [6,4,2,1,3,5] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[6,3,1,4,5,2] => [6,2,4,5,1,3] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[6,3,5,4,1,2] => [6,2,4,3,1,5] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[6,4,1,3,5,2] => [6,4,2,5,1,3] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[6,4,5,3,1,2] => [6,4,2,3,1,5] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[6,5,1,3,4,2] => [6,4,5,2,1,3] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[6,7,4,5,1,2,3] => [6,7,3,4,1,2,5] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
[7,6,4,5,1,2,3] => [6,7,3,4,2,1,5] => [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000068
Mp00071: Permutations descent compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00262: Binary words poset of factorsPosets
St000068: Posets ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 33%
Values
[1,2] => [2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1] => [1,1] => 11 => ([(0,2),(2,1)],3)
=> 1
[1,2,3] => [3] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,3,2] => [2,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[2,1,3] => [1,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,3,1] => [2,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[3,1,2] => [1,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,2,1] => [1,1,1] => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4] => [4] => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
[1,2,4,3] => [3,1] => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 1
[1,3,2,4] => [2,2] => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[1,3,4,2] => [3,1] => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 1
[1,4,2,3] => [2,2] => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[1,4,3,2] => [2,1,1] => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[2,1,3,4] => [1,3] => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1
[2,1,4,3] => [1,2,1] => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[2,3,1,4] => [2,2] => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[2,3,4,1] => [3,1] => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 1
[2,4,1,3] => [2,2] => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[2,4,3,1] => [2,1,1] => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[3,1,2,4] => [1,3] => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1
[3,1,4,2] => [1,2,1] => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[3,2,1,4] => [1,1,2] => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
[3,2,4,1] => [1,2,1] => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[3,4,1,2] => [2,2] => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1
[3,4,2,1] => [2,1,1] => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[4,1,2,3] => [1,3] => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1
[4,1,3,2] => [1,2,1] => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[4,2,1,3] => [1,1,2] => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
[4,2,3,1] => [1,2,1] => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[4,3,1,2] => [1,1,2] => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1
[4,3,2,1] => [1,1,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5] => [5] => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[1,2,3,5,4] => [4,1] => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 1
[1,2,4,3,5] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,2,4,5,3] => [4,1] => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 1
[1,2,5,3,4] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,2,5,4,3] => [3,1,1] => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1
[1,3,2,4,5] => [2,3] => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[1,3,2,5,4] => [2,2,1] => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2
[1,3,4,2,5] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,3,4,5,2] => [4,1] => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 1
[1,3,5,2,4] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,3,5,4,2] => [3,1,1] => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1
[1,4,2,3,5] => [2,3] => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[1,4,2,5,3] => [2,2,1] => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2
[1,4,3,2,5] => [2,1,2] => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,4,3,5,2] => [2,2,1] => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2
[1,4,5,2,3] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,4,5,3,2] => [3,1,1] => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1
[1,5,2,3,4] => [2,3] => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[1,5,2,4,3] => [2,2,1] => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2
[1,5,3,2,4] => [2,1,2] => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,5,3,4,2] => [2,2,1] => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2
[1,5,4,2,3] => [2,1,2] => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[1,5,4,3,2] => [2,1,1,1] => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 1
[2,1,3,4,5] => [1,4] => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[2,1,3,5,4] => [1,3,1] => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1
[2,1,4,3,5] => [1,2,2] => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[2,1,4,5,3] => [1,3,1] => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1
[2,1,5,3,4] => [1,2,2] => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[2,1,5,4,3] => [1,2,1,1] => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 1
[2,3,1,4,5] => [2,3] => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 2
[2,3,1,5,4] => [2,2,1] => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2
[2,3,4,1,5] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[2,3,4,5,1] => [4,1] => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 1
[2,3,5,1,4] => [3,2] => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2
[2,3,5,4,1] => [3,1,1] => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1
[3,1,2,4,5] => [1,4] => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[3,2,1,4,5] => [1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[4,1,2,3,5] => [1,4] => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[4,2,1,3,5] => [1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[4,3,1,2,5] => [1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[4,3,2,1,5] => [1,1,1,2] => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[5,1,2,3,4] => [1,4] => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[5,2,1,3,4] => [1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[5,3,1,2,4] => [1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[5,3,2,1,4] => [1,1,1,2] => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[5,4,1,2,3] => [1,1,3] => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1
[5,4,2,1,3] => [1,1,1,2] => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[5,4,3,1,2] => [1,1,1,2] => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1
[5,4,3,2,1] => [1,1,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[6,5,4,3,2,1] => [1,1,1,1,1,1] => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The number of minimal elements in a poset.
Matching statistic: St000093
Mp00209: Permutations pattern posetPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000093: Graphs ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ([(0,1),(0,2),(1,2),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ([(0,1),(0,2),(1,2),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,8),(4,5),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,6),(1,8),(2,4),(2,5),(2,6),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,8),(0,9),(0,11),(1,2),(1,3),(1,4),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,10),(3,11),(4,5),(4,8),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 2 + 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ([(0,4),(0,5),(0,9),(0,10),(0,11),(0,13),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,12),(3,4),(3,6),(3,7),(3,8),(3,12),(3,13),(4,5),(4,9),(4,10),(4,11),(4,13),(5,9),(5,10),(5,11),(5,13),(6,7),(6,8),(6,10),(6,11),(6,12),(6,13),(7,8),(7,9),(7,11),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2 + 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,7),(1,8),(1,10),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(3,11),(4,7),(4,8),(4,10),(4,11),(5,6),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 1 + 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,8),(0,9),(0,11),(1,2),(1,3),(1,4),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,10),(3,11),(4,5),(4,8),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 2 + 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ([(0,4),(0,5),(0,9),(0,10),(0,11),(0,13),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,12),(3,4),(3,6),(3,7),(3,8),(3,12),(3,13),(4,5),(4,9),(4,10),(4,11),(4,13),(5,9),(5,10),(5,11),(5,13),(6,7),(6,8),(6,10),(6,11),(6,12),(6,13),(7,8),(7,9),(7,11),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2 + 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ([(0,1),(0,4),(0,5),(0,6),(0,8),(0,10),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(5,6),(5,9),(5,10),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(0,10),(0,12),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ([(0,4),(0,5),(0,6),(0,8),(0,9),(1,2),(1,3),(1,5),(1,7),(1,8),(1,10),(2,3),(2,4),(2,7),(2,8),(2,10),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,9),(5,10),(6,7),(6,8),(6,9),(7,8),(7,9),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ([(0,1),(0,4),(0,5),(0,6),(0,8),(0,10),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(5,6),(5,9),(5,10),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,7),(1,8),(1,10),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(3,11),(4,7),(4,8),(4,10),(4,11),(5,6),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 2 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(0,10),(0,12),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(0,10),(0,12),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ([(0,1),(0,4),(0,5),(0,6),(0,8),(0,10),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(5,6),(5,9),(5,10),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,6),(1,7),(1,8),(1,9),(2,5),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,9),(5,6),(5,9),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,6),(1,8),(2,4),(2,5),(2,6),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(1,2),(1,5),(1,6),(1,8),(1,9),(1,10),(2,4),(2,5),(2,6),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 1 + 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(1,2),(1,5),(1,6),(1,8),(1,9),(1,10),(2,4),(2,5),(2,6),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(1,2),(1,5),(1,6),(1,8),(1,9),(1,10),(2,4),(2,5),(2,6),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,8),(3,4),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ([(0,2),(0,3),(0,7),(0,8),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,11),(1,12),(2,3),(2,6),(2,7),(2,8),(2,10),(2,11),(3,6),(3,8),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,12),(7,9),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ([(0,1),(0,4),(0,5),(0,6),(0,8),(0,10),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(5,6),(5,9),(5,10),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 1 + 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ([(0,4),(0,5),(0,9),(0,10),(0,11),(0,13),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,12),(3,4),(3,6),(3,7),(3,8),(3,12),(3,13),(4,5),(4,9),(4,10),(4,11),(4,13),(5,9),(5,10),(5,11),(5,13),(6,7),(6,8),(6,10),(6,11),(6,12),(6,13),(7,8),(7,9),(7,11),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2 + 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,9),(0,13),(1,8),(1,11),(1,12),(2,4),(2,5),(2,13),(3,6),(3,7),(3,9),(3,13),(4,8),(4,10),(4,12),(5,8),(5,10),(5,11),(6,8),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ([(0,1),(0,2),(0,4),(0,8),(0,11),(0,12),(0,13),(1,2),(1,4),(1,8),(1,10),(1,11),(1,13),(2,4),(2,8),(2,9),(2,11),(2,13),(3,4),(3,5),(3,6),(3,7),(3,9),(3,10),(3,12),(4,7),(4,8),(4,11),(4,13),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2 + 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(0,10),(0,12),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ([(0,3),(0,4),(0,7),(0,8),(0,9),(0,10),(0,12),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(1,11),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(3,4),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,7),(0,8),(0,10),(0,12),(1,2),(1,3),(1,6),(1,7),(1,9),(1,11),(2,3),(2,6),(2,7),(2,9),(2,10),(2,11),(3,6),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,12),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,8),(6,9),(6,11),(6,12),(7,8),(7,10),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,7),(1,8),(1,10),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,7),(3,8),(3,9),(3,11),(4,7),(4,8),(4,10),(4,11),(5,6),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 1 + 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ([(0,2),(0,3),(0,7),(0,8),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,11),(1,12),(2,3),(2,6),(2,7),(2,8),(2,10),(2,11),(3,6),(3,8),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,12),(7,9),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2 + 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Mp00209: Permutations pattern posetPosets
Mp00198: Posets incomparability graphGraphs
St000286: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
Description
The number of connected components of the complement of a graph. The complement of a graph is the graph on the same vertex set with complementary edges.
Mp00209: Permutations pattern posetPosets
Mp00074: Posets to graphGraphs
St000287: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,9),(0,13),(1,8),(1,11),(1,12),(2,4),(2,5),(2,13),(3,6),(3,7),(3,9),(3,13),(4,8),(4,10),(4,12),(5,8),(5,10),(5,11),(6,8),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
Description
The number of connected components of a graph.
Mp00209: Permutations pattern posetPosets
Mp00125: Posets dual posetPosets
St000908: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,2),(0,3),(1,8),(1,9),(2,5),(2,6),(2,7),(3,1),(3,5),(3,6),(3,7),(4,10),(5,8),(5,9),(6,4),(6,9),(7,4),(7,8),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,4),(1,5),(2,7),(2,8),(3,1),(3,7),(3,8),(4,9),(5,9),(6,9),(7,5),(7,6),(8,4),(8,6)],10)
=> ? = 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,2),(0,3),(1,4),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,5),(8,11),(9,4),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,2),(0,3),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,4),(7,10),(7,11),(7,12),(8,4),(8,9),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The length of the shortest maximal antichain in a poset.
Mp00209: Permutations pattern posetPosets
Mp00125: Posets dual posetPosets
St000914: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,2),(0,3),(1,8),(1,9),(2,5),(2,6),(2,7),(3,1),(3,5),(3,6),(3,7),(4,10),(5,8),(5,9),(6,4),(6,9),(7,4),(7,8),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,4),(1,5),(2,7),(2,8),(3,1),(3,7),(3,8),(4,9),(5,9),(6,9),(7,5),(7,6),(8,4),(8,6)],10)
=> ? = 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,2),(0,3),(1,4),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,5),(8,11),(9,4),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,2),(0,3),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,4),(7,10),(7,11),(7,12),(8,4),(8,9),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The sum of the values of the Möbius function of a poset. The Möbius function $\mu$ of a finite poset is defined as $$\mu (x,y)=\begin{cases} 1& \text{if }x = y\\ -\sum _{z: x\leq z < y}\mu (x,z)& \text{for }x < y\\ 0&\text{otherwise}. \end{cases} $$ Since $\mu(x,y)=0$ whenever $x\not\leq y$, this statistic is $$ \sum_{x\leq y} \mu(x,y). $$ If the poset has a minimal or a maximal element, then the definition implies immediately that the statistic equals $1$. Moreover, the statistic equals the sum of the statistics of the connected components. This statistic is also called the magnitude of a poset.
Mp00209: Permutations pattern posetPosets
Mp00074: Posets to graphGraphs
St001518: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,9),(0,13),(1,8),(1,11),(1,12),(2,4),(2,5),(2,13),(3,6),(3,7),(3,9),(3,13),(4,8),(4,10),(4,12),(5,8),(5,10),(5,11),(6,8),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
Description
The number of graphs with the same ordinary spectrum as the given graph.
Mp00209: Permutations pattern posetPosets
Mp00125: Posets dual posetPosets
St001532: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,2),(0,3),(1,8),(1,9),(2,5),(2,6),(2,7),(3,1),(3,5),(3,6),(3,7),(4,10),(5,8),(5,9),(6,4),(6,9),(7,4),(7,8),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,4),(1,5),(2,7),(2,8),(3,1),(3,7),(3,8),(4,9),(5,9),(6,9),(7,5),(7,6),(8,4),(8,6)],10)
=> ? = 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,2),(0,3),(1,4),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,5),(8,11),(9,4),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,2),(0,3),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,4),(7,10),(7,11),(7,12),(8,4),(8,9),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The leading coefficient of the Poincare polynomial of the poset cone. For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$. Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$. This statistic records its leading coefficient.
The following 22 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000449The number of pairs of vertices of a graph with distance 4. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001765The number of connected components of the friends and strangers graph. St001271The competition number of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian.