Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000246
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000246: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> []
=> [1,0]
=> [1] => 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [1,2] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,2,4,6] => 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,3,4,6] => 10
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Mp00048: Ordered trees left-right symmetryOrdered trees
St000400: Ordered trees ⟶ ℤResult quality: 80% values known / values provided: 90%distinct values known / distinct values provided: 80%
Values
[]
=> []
=> ? = 0
[[]]
=> [[]]
=> 1
[[],[]]
=> [[],[]]
=> 2
[[[]]]
=> [[[]]]
=> 3
[[],[],[]]
=> [[],[],[]]
=> 3
[[],[[]]]
=> [[[]],[]]
=> 4
[[[]],[]]
=> [[],[[]]]
=> 4
[[[],[]]]
=> [[[],[]]]
=> 5
[[[[]]]]
=> [[[[]]]]
=> 6
[[],[],[],[]]
=> [[],[],[],[]]
=> 4
[[],[],[[]]]
=> [[[]],[],[]]
=> 5
[[],[[]],[]]
=> [[],[[]],[]]
=> 5
[[],[[],[]]]
=> [[[],[]],[]]
=> 6
[[],[[[]]]]
=> [[[[]]],[]]
=> 7
[[[]],[],[]]
=> [[],[],[[]]]
=> 5
[[[]],[[]]]
=> [[[]],[[]]]
=> 6
[[[],[]],[]]
=> [[],[[],[]]]
=> 6
[[[[]]],[]]
=> [[],[[[]]]]
=> 7
[[[],[],[]]]
=> [[[],[],[]]]
=> 7
[[[],[[]]]]
=> [[[[]],[]]]
=> 8
[[[[]],[]]]
=> [[[],[[]]]]
=> 8
[[[[],[]]]]
=> [[[[],[]]]]
=> 9
[[[[[]]]]]
=> [[[[[]]]]]
=> 10
[[],[],[],[],[]]
=> [[],[],[],[],[]]
=> 5
[[],[],[],[[]]]
=> [[[]],[],[],[]]
=> 6
[[],[],[[]],[]]
=> [[],[[]],[],[]]
=> 6
[[],[],[[],[]]]
=> [[[],[]],[],[]]
=> 7
[[],[],[[[]]]]
=> [[[[]]],[],[]]
=> 8
[[],[[]],[],[]]
=> [[],[],[[]],[]]
=> 6
[[],[[]],[[]]]
=> [[[]],[[]],[]]
=> 7
[[],[[],[]],[]]
=> [[],[[],[]],[]]
=> 7
[[],[[[]]],[]]
=> [[],[[[]]],[]]
=> 8
[[],[[],[],[]]]
=> [[[],[],[]],[]]
=> 8
[[],[[],[[]]]]
=> [[[[]],[]],[]]
=> 9
[[],[[[]],[]]]
=> [[[],[[]]],[]]
=> 9
[[],[[[],[]]]]
=> [[[[],[]]],[]]
=> 10
[[],[[[[]]]]]
=> [[[[[]]]],[]]
=> 11
[[[]],[],[],[]]
=> [[],[],[],[[]]]
=> 6
[[[]],[],[[]]]
=> [[[]],[],[[]]]
=> 7
[[[]],[[]],[]]
=> [[],[[]],[[]]]
=> 7
[[[]],[[],[]]]
=> [[[],[]],[[]]]
=> 8
[[[]],[[[]]]]
=> [[[[]]],[[]]]
=> 9
[[[],[]],[],[]]
=> [[],[],[[],[]]]
=> 7
[[[[]]],[],[]]
=> [[],[],[[[]]]]
=> 8
[[[],[]],[[]]]
=> [[[]],[[],[]]]
=> 8
[[[[]]],[[]]]
=> [[[]],[[[]]]]
=> 9
[[[],[],[]],[]]
=> [[],[[],[],[]]]
=> 8
[[[],[[]]],[]]
=> [[],[[[]],[]]]
=> 9
[[[[]],[]],[]]
=> [[],[[],[[]]]]
=> 9
[[[[],[]]],[]]
=> [[],[[[],[]]]]
=> 10
[[[[[]]]],[]]
=> [[],[[[[]]]]]
=> 11
[[],[[[[[[[]]]]]]]]
=> [[[[[[[[]]]]]]],[]]
=> ? = 29
[[[[[]]]],[[[[]]]]]
=> [[[[[]]]],[[[[]]]]]
=> ? = 20
[[[],[],[],[],[],[],[]]]
=> [[[],[],[],[],[],[],[]]]
=> ? = 15
[[[],[[[[[[]]]]]]]]
=> [[[[[[[[]]]]]],[]]]
=> ? = 30
[[[[[[[[]]]]]],[]]]
=> [[[],[[[[[[]]]]]]]]
=> ? = 30
[[[[],[],[],[],[],[]]]]
=> [[[[],[],[],[],[],[]]]]
=> ? = 21
[[[[[]],[[]],[[]]]]]
=> [[[[[]],[[]],[[]]]]]
=> ? = 24
[[[[[[]]],[[[]]]]]]
=> [[[[[[]]],[[[]]]]]]
=> ? = 27
[[[[[],[],[],[],[]]]]]
=> [[[[[],[],[],[],[]]]]]
=> ? = 26
[[[[[[],[],[],[]]]]]]
=> [[[[[[],[],[],[]]]]]]
=> ? = 30
[[[[[[[]],[[]]]]]]]
=> [[[[[[[]],[[]]]]]]]
=> ? = 32
[[[[[[[],[],[]]]]]]]
=> [[[[[[[],[],[]]]]]]]
=> ? = 33
[[[[[[[[],[]]]]]]]]
=> [[[[[[[[],[]]]]]]]]
=> ? = 35
[[[[[[[[[]]]]]]]]]
=> [[[[[[[[[]]]]]]]]]
=> ? = 36
Description
The path length of an ordered tree. This is the sum of the lengths of all paths from the root to a node, see Section 2.3.4.5 of [1].
Matching statistic: St000639
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St000639: Posets ⟶ ℤResult quality: 69% values known / values provided: 76%distinct values known / distinct values provided: 69%
Values
[]
=> .
=> ? => ?
=> ? = 0
[[]]
=> [.,.]
=> [1] => ([],1)
=> ? = 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 2
[[[]]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 3
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 3
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 4
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(1,2)],3)
=> 4
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 5
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 6
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 4
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 5
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(2,3)],4)
=> 5
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 6
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 7
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(2,3)],4)
=> 5
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 6
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 6
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 7
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 7
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 8
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 8
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 9
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 10
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 5
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 6
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 6
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 7
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 8
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 6
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 7
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 7
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 8
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 8
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 10
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 11
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 6
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 7
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 7
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 8
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 9
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 7
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 8
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 8
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 9
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 8
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 9
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 10
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 11
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 9
[[],[[[]]],[[[]]]]
=> [.,[[[.,.],.],[[[.,.],.],.]]]
=> [5,6,7,2,3,4,1] => ([(1,6),(2,5),(5,3),(6,4)],7)
=> ? = 13
[[],[[[[[[]]]]]]]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 22
[[[[[]]]],[[[]]]]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> [5,6,7,1,2,3,4] => ([(0,5),(1,6),(4,3),(5,4),(6,2)],7)
=> ? = 16
[[[[[[]]]]],[[]]]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> [6,7,1,2,3,4,5] => ([(0,6),(1,3),(4,5),(5,2),(6,4)],7)
=> ? = 18
[[[[[[[]]]]]],[]]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [7,1,2,3,4,5,6] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 22
[[[],[[[[[]]]]]]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? = 23
[[[[]],[[]],[[]]]]
=> [[[.,.],[[.,.],[[.,.],.]]],.]
=> [5,6,3,4,1,2,7] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 16
[[[[[]]],[[[]]]]]
=> [[[[.,.],.],[[[.,.],.],.]],.]
=> [4,5,6,1,2,3,7] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ? = 19
[[[[[[[]]]]],[]]]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> [6,1,2,3,4,5,7] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? = 23
[[[[[[]],[[]]]]]]
=> [[[[[.,.],[[.,.],.]],.],.],.]
=> [3,4,1,2,5,6,7] => ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 24
[[[[[[[[]]]]]]]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 28
[[],[],[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [8,7,6,5,4,3,2,1] => ([],8)
=> ? = 8
[[],[],[],[],[],[],[[]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [7,8,6,5,4,3,2,1] => ([(6,7)],8)
=> ? = 9
[[],[],[],[],[],[[],[]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [7,6,8,5,4,3,2,1] => ([(5,7),(6,7)],8)
=> ? = 10
[[],[],[],[[]],[],[],[]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [8,7,6,4,5,3,2,1] => ([(6,7)],8)
=> ? = 9
[[],[],[],[[],[]],[],[]]
=> [.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [8,7,5,4,6,3,2,1] => ([(5,7),(6,7)],8)
=> ? = 10
[[],[[[[[[[]]]]]]]]
=> [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,1] => ([(1,7),(3,4),(4,6),(5,3),(6,2),(7,5)],8)
=> ? = 29
[[[]],[[]],[[]],[[]]]
=> [[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> [7,8,5,6,3,4,1,2] => ([(0,7),(1,6),(2,5),(3,4)],8)
=> ? = 12
[[[[[]]]],[[[[]]]]]
=> [[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [5,6,7,8,1,2,3,4] => ([(0,7),(1,6),(4,2),(5,3),(6,4),(7,5)],8)
=> ? = 20
[[[[[[[]]]]]],[[]]]
=> [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> [7,8,1,2,3,4,5,6] => ([(0,7),(1,3),(4,6),(5,4),(6,2),(7,5)],8)
=> ? = 24
[[[[[[[[]]]]]]],[]]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [8,1,2,3,4,5,6,7] => ([(1,7),(3,4),(4,6),(5,3),(6,2),(7,5)],8)
=> ? = 29
[[[],[],[],[],[],[],[]]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [7,6,5,4,3,2,1,8] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 15
[[[],[[[[[[]]]]]]]]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> [2,3,4,5,6,7,1,8] => ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 30
[[[[[[[[]]]]]],[]]]
=> [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> [7,1,2,3,4,5,6,8] => ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 30
[[[[],[],[],[],[],[]]]]
=> [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> [6,5,4,3,2,1,7,8] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ? = 21
[[[[[]],[[]],[[]]]]]
=> [[[[.,.],[[.,.],[[.,.],.]]],.],.]
=> [5,6,3,4,1,2,7,8] => ([(0,6),(1,5),(2,4),(4,7),(5,7),(6,7),(7,3)],8)
=> ? = 24
[[[[[[]]],[[[]]]]]]
=> [[[[[.,.],.],[[[.,.],.],.]],.],.]
=> [4,5,6,1,2,3,7,8] => ([(0,6),(1,5),(2,7),(3,7),(5,2),(6,3),(7,4)],8)
=> ? = 27
[[[[[],[],[],[],[]]]]]
=> [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> [5,4,3,2,1,6,7,8] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 26
[[[[[[],[],[],[]]]]]]
=> [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [4,3,2,1,5,6,7,8] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(6,5),(7,4)],8)
=> ? = 30
[[[[[[[]],[[]]]]]]]
=> [[[[[[.,.],[[.,.],.]],.],.],.],.]
=> [3,4,1,2,5,6,7,8] => ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ? = 32
[[[[[[[],[],[]]]]]]]
=> [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [3,2,1,4,5,6,7,8] => ([(0,7),(1,7),(2,7),(4,5),(5,3),(6,4),(7,6)],8)
=> ? = 33
[[[[[[[[],[]]]]]]]]
=> [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> [2,1,3,4,5,6,7,8] => ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ? = 35
[[[[[[[[[]]]]]]]]]
=> [[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7,8] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 36
Description
The number of relations in a poset. This is the number of intervals $x,y$ with $x\leq y$ in the poset, and therefore the dimension of the posets incidence algebra.
Matching statistic: St000041
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 63% values known / values provided: 66%distinct values known / distinct values provided: 63%
Values
[]
=> []
=> [1,0]
=> [(1,2)]
=> 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)]
=> 10
[[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [(1,16),(2,3),(4,5),(6,7),(8,9),(10,11),(12,15),(13,14)]
=> ? = 8
[[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [(1,16),(2,3),(4,5),(6,7),(8,9),(10,15),(11,12),(13,14)]
=> ? = 9
[[],[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [(1,16),(2,3),(4,5),(6,7),(8,9),(10,15),(11,14),(12,13)]
=> ? = 10
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [(1,16),(2,3),(4,5),(6,7),(8,11),(9,10),(12,13),(14,15)]
=> ? = 8
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [(1,16),(2,3),(4,5),(6,7),(8,15),(9,10),(11,12),(13,14)]
=> ? = 10
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [(1,16),(2,3),(4,5),(6,9),(7,8),(10,13),(11,12),(14,15)]
=> ? = 9
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,16),(2,3),(4,5),(6,11),(7,8),(9,10),(12,13),(14,15)]
=> ? = 9
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [(1,16),(2,3),(4,5),(6,11),(7,10),(8,9),(12,13),(14,15)]
=> ? = 10
[[],[],[[],[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [(1,16),(2,3),(4,5),(6,13),(7,8),(9,10),(11,12),(14,15)]
=> ? = 10
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [(1,16),(2,3),(4,7),(5,6),(8,9),(10,11),(12,15),(13,14)]
=> ? = 9
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [(1,16),(2,3),(4,9),(5,6),(7,8),(10,15),(11,12),(13,14)]
=> ? = 11
[[],[[[]]],[[[]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [(1,16),(2,3),(4,9),(5,8),(6,7),(10,15),(11,14),(12,13)]
=> ? = 13
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,16),(2,3),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? = 22
[[[[[]]]],[[[]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [(1,16),(2,9),(3,8),(4,7),(5,6),(10,15),(11,14),(12,13)]
=> ? = 16
[[[[[[]]]]],[[]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [(1,16),(2,11),(3,10),(4,9),(5,8),(6,7),(12,15),(13,14)]
=> ? = 18
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [(1,16),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(14,15)]
=> ? = 22
[[[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [(1,16),(2,15),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14)]
=> ? = 13
[[[],[[[[[]]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,4),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? = 23
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [(1,16),(2,15),(3,6),(4,5),(7,10),(8,9),(11,14),(12,13)]
=> ? = 16
[[[[[]]],[[[]]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [(1,16),(2,15),(3,8),(4,7),(5,6),(9,14),(10,13),(11,12)]
=> ? = 19
[[[[[[[]]]]],[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [(1,16),(2,15),(3,12),(4,11),(5,10),(6,9),(7,8),(13,14)]
=> ? = 23
[[[[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,5),(6,7),(8,9),(10,11),(12,13)]
=> ? = 18
[[[[],[[[[]]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,5),(6,13),(7,12),(8,11),(9,10)]
=> ? = 24
[[[[[[[]]]],[]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,11),(5,10),(6,9),(7,8),(12,13)]
=> ? = 24
[[[[[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,6),(7,8),(9,10),(11,12)]
=> ? = 22
[[[[[[]],[[]]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,8),(6,7),(9,12),(10,11)]
=> ? = 24
[[[[[[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,7),(8,9),(10,11)]
=> ? = 25
[[[[[[[],[]]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 27
[[[[[[[[]]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> ? = 28
[[],[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [(1,18),(2,3),(4,5),(6,7),(8,9),(10,11),(12,13),(14,17),(15,16)]
=> ? = 9
[[],[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [(1,18),(2,3),(4,5),(6,7),(8,9),(10,11),(12,17),(13,14),(15,16)]
=> ? = 10
[[],[],[],[[]],[],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,18),(2,3),(4,5),(6,7),(8,11),(9,10),(12,13),(14,15),(16,17)]
=> ? = 9
[[],[],[],[[],[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,18),(2,3),(4,5),(6,7),(8,13),(9,10),(11,12),(14,15),(16,17)]
=> ? = 10
[[],[[[[[[[]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [(1,18),(2,3),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)]
=> ? = 29
[[[]],[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [(1,18),(2,5),(3,4),(6,9),(7,8),(10,13),(11,12),(14,17),(15,16)]
=> ? = 12
[[[[[]]]],[[[[]]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [(1,18),(2,9),(3,8),(4,7),(5,6),(10,17),(11,16),(12,15),(13,14)]
=> ? = 20
[[[[[[[]]]]]],[[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [(1,18),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(14,17),(15,16)]
=> ? = 24
[[[[[[[[]]]]]]],[]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [(1,18),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(16,17)]
=> ? = 29
[[[],[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [(1,18),(2,17),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)]
=> ? = 15
[[[],[[[[[[]]]]]]]]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,4),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)]
=> ? = 30
[[[[[[[[]]]]]],[]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [(1,18),(2,17),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(15,16)]
=> ? = 30
[[[[],[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,5),(6,7),(8,9),(10,11),(12,13),(14,15)]
=> ? = 21
[[[[[]],[[]],[[]]]]]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,7),(5,6),(8,11),(9,10),(12,15),(13,14)]
=> ? = 24
[[[[[[]]],[[[]]]]]]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,9),(5,8),(6,7),(10,15),(11,14),(12,13)]
=> ? = 27
[[[[[],[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,6),(7,8),(9,10),(11,12),(13,14)]
=> ? = 26
[[[[[[],[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 30
[[[[[[[]],[[]]]]]]]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,9),(7,8),(10,13),(11,12)]
=> ? = 32
[[[[[[[],[],[]]]]]]]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,8),(9,10),(11,12)]
=> ? = 33
[[[[[[[[],[]]]]]]]]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)]
=> ? = 35
[[[[[[[[[]]]]]]]]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? = 36
Description
The number of nestings of a perfect matching. This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 63% values known / values provided: 64%distinct values known / distinct values provided: 63%
Values
[]
=> []
=> [1,0]
=> 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 10
[[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 8
[[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 9
[[],[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 10
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 8
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 10
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 9
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 9
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 10
[[],[],[[],[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 10
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 9
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 11
[[],[[[]]],[[[]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 13
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 22
[[[[[]]]],[[[]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> ? = 16
[[[[[[]]]]],[[]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 18
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 22
[[[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 13
[[[],[[[[[]]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 23
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 16
[[[[[]]],[[[]]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 19
[[[[[[[]]]]],[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 23
[[[[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 18
[[[[],[[[[]]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 24
[[[[[[[]]]],[]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 24
[[[[[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 22
[[[[[[]],[[]]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 24
[[[[[[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 25
[[[[[[[],[]]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 27
[[[[[[[[]]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 28
[[],[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8
[[],[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 9
[[],[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 10
[[],[],[],[[]],[],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 9
[[],[],[],[[],[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 10
[[],[[[[[[[]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 29
[[[]],[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 12
[[[[[]]]],[[[[]]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 20
[[[[[[[]]]]]],[[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> ? = 24
[[[[[[[[]]]]]]],[]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> ? = 29
[[[],[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 15
[[[],[[[[[[]]]]]]]]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 30
[[[[[[[[]]]]]],[]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> ? = 30
[[[[],[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 21
[[[[[]],[[]],[[]]]]]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 24
[[[[[[]]],[[[]]]]]]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0]
=> ? = 27
[[[[[],[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 26
[[[[[[],[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 30
[[[[[[[]],[[]]]]]]]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> ? = 32
[[[[[[[],[],[]]]]]]]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> ? = 33
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Mp00051: Ordered trees to Dyck pathDyck paths
St001228: Dyck paths ⟶ ℤResult quality: 60% values known / values provided: 64%distinct values known / distinct values provided: 60%
Values
[]
=> []
=> ? = 0
[[]]
=> [1,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 10
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 11
[[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 8
[[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[[],[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 10
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 8
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 10
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 9
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 9
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 10
[[],[],[[],[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 10
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 9
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 11
[[],[[[]]],[[[]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 13
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 22
[[[[[]]]],[[[]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 16
[[[[[[]]]]],[[]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 18
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 22
[[[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 13
[[[],[[[[[]]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 23
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 16
[[[[[]]],[[[]]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 19
[[[[[[[]]]]],[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 23
[[[[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 18
[[[[],[[[[]]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 24
[[[[[[[]]]],[]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 24
[[[[[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 22
[[[[[[]],[[]]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 24
[[[[[[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 25
[[[[[[[],[]]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 27
[[[[[[[[]]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 28
[[],[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
[[],[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 9
[[],[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 10
[[],[],[],[[]],[],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 9
[[],[],[],[[],[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 10
[[],[[[[[[[]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 29
[[[]],[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 12
[[[[[]]]],[[[[]]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 20
[[[[[[[]]]]]],[[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 24
[[[[[[[[]]]]]]],[]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 29
[[[],[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 15
[[[],[[[[[[]]]]]]]]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 30
[[[[[[[[]]]]]],[]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 30
[[[[],[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 21
[[[[[]],[[]],[[]]]]]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 24
[[[[[[]]],[[[]]]]]]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 27
[[[[[],[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 26
[[[[[[],[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 30
[[[[[[[]],[[]]]]]]]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 32
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St000081
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000081: Graphs ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 69%
Values
[]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
[[]]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 6
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 12
[[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13
[[[[[]],[[]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 17
[[],[],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 7
[[],[],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 8
[[],[],[],[],[[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 9
[[],[],[],[],[[[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 10
[[],[],[],[[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 8
[[],[],[],[[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 10
[[],[],[[]],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 9
[[],[],[[],[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 9
[[],[],[[[]]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 10
[[],[],[[],[],[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 10
[[],[[]],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 9
[[],[[],[]],[[],[]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 11
[[],[[[]]],[[[]]]]
=> ([(0,7),(1,6),(2,5),(3,7),(4,7),(5,3),(6,4)],8)
=> ?
=> ?
=> ? = 13
[[],[[[[[[]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 22
[[[[[]]]],[[[]]]]
=> ([(0,5),(1,6),(2,7),(3,7),(4,3),(5,4),(6,2)],8)
=> ?
=> ?
=> ? = 16
[[[[[[]]]]],[[]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 18
[[[[[[[]]]]]],[]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ?
=> ? = 22
[[[],[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 13
[[[],[[[[[]]]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ?
=> ?
=> ? = 23
[[[[]],[[]],[[]]]]
=> ([(0,6),(1,5),(2,4),(4,7),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 16
[[[[[]]],[[[]]]]]
=> ([(0,6),(1,5),(2,7),(3,7),(5,2),(6,3),(7,4)],8)
=> ?
=> ?
=> ? = 19
[[[[[[[]]]]],[]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ?
=> ?
=> ? = 23
[[[[],[],[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,5)],8)
=> ?
=> ?
=> ? = 18
[[[[],[[[[]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 24
[[[[[[[]]]],[]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 24
[[[[[],[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(6,5),(7,4)],8)
=> ?
=> ?
=> ? = 22
[[[[[[]],[[]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ?
=> ?
=> ? = 24
[[[[[[],[],[]]]]]]
=> ([(0,7),(1,7),(2,7),(4,5),(5,3),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 25
[[[[[[[],[]]]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 27
[[],[],[],[],[],[],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ?
=> ? = 8
[[],[],[],[],[],[],[[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ?
=> ?
=> ? = 9
[[],[],[],[],[],[[],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> ?
=> ?
=> ? = 10
[[],[],[],[[]],[],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ?
=> ?
=> ? = 9
[[],[],[],[[],[]],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> ?
=> ?
=> ? = 10
[[],[[[[[[[]]]]]]]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ?
=> ?
=> ? = 29
[[[]],[[]],[[]],[[]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ?
=> ? = 12
[[[[[]]]],[[[[]]]]]
=> ([(0,7),(1,6),(2,8),(3,8),(4,2),(5,3),(6,4),(7,5)],9)
=> ?
=> ?
=> ? = 20
[[[[[[[]]]]]],[[]]]
=> ([(0,7),(1,3),(2,8),(3,8),(4,6),(5,4),(6,2),(7,5)],9)
=> ?
=> ?
=> ? = 24
[[[[[[[[]]]]]]],[]]
=> ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9)
=> ?
=> ?
=> ? = 29
[[[],[],[],[],[],[],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(8,7)],9)
=> ?
=> ?
=> ? = 15
[[[],[[[[[[]]]]]]]]
=> ([(0,8),(1,7),(2,8),(4,6),(5,4),(6,2),(7,5),(8,3)],9)
=> ?
=> ?
=> ? = 30
[[[[[[[[]]]]]],[]]]
=> ([(0,8),(1,7),(2,8),(4,6),(5,4),(6,2),(7,5),(8,3)],9)
=> ?
=> ?
=> ? = 30
[[[[],[],[],[],[],[]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,6)],9)
=> ?
=> ?
=> ? = 21
[[[[[]],[[]],[[]]]]]
=> ([(0,6),(1,5),(2,4),(4,8),(5,8),(6,8),(7,3),(8,7)],9)
=> ?
=> ?
=> ? = 24
[[[[[[]]],[[[]]]]]]
=> ([(0,7),(1,6),(3,8),(4,8),(5,2),(6,3),(7,4),(8,5)],9)
=> ?
=> ?
=> ? = 27
[[[[[],[],[],[],[]]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,7),(7,6),(8,5)],9)
=> ?
=> ?
=> ? = 26
[[[[[[],[],[],[]]]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(6,5),(7,6),(8,4)],9)
=> ?
=> ?
=> ? = 30
Description
The number of edges of a graph.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000018: Permutations ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 63%
Values
[]
=> []
=> [1,0]
=> [1] => 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [2,1] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,3,4,2,6,1] => 10
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? = 7
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,7,5,6,1] => ? = 8
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => ? = 9
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => ? = 7
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,6,4,5,7,1] => ? = 8
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => ? = 9
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,7,4,5,6,1] => ? = 9
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,7,4,6,5,1] => ? = 10
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,6,3,4,5,7,1] => ? = 9
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,6,3,5,4,7,1] => ? = 10
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,7,3,4,5,6,1] => ? = 10
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 16
[[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => ? = 9
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,3,2,7,6,5,1] => ? = 12
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => ? = 13
[[[[[[]]]]],[]]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ? = 16
[[[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [7,2,3,4,5,6,1] => ? = 11
[[[],[[[[]]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [7,2,6,5,4,3,1] => ? = 17
[[[[[[]]]],[]]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => ? = 17
[[[[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [7,3,4,5,6,2,1] => ? = 15
[[[[],[[[]]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,3,6,5,4,2,1] => ? = 18
[[[[[]],[[]]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [7,4,3,6,5,2,1] => ? = 17
[[[[[[]]],[]]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ? = 18
[[[[[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [7,6,3,4,5,2,1] => ? = 18
[[[[[],[[]]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [7,6,3,5,4,2,1] => ? = 19
[[[[[[]],[]]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [7,6,4,3,5,2,1] => ? = 19
[[[[[[],[]]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => ? = 20
[[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,6,8,7,1] => ? = 8
[[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,5,8,6,7,1] => ? = 9
[[],[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,5,8,7,6,1] => ? = 10
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,4,6,5,7,8,1] => ? = 8
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,3,5,4,7,6,8,1] => ? = 9
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,3,6,4,5,7,8,1] => ? = 9
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,6,5,4,7,8,1] => ? = 10
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [2,4,3,5,6,8,7,1] => ? = 9
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [2,5,3,4,8,6,7,1] => ? = 11
[[],[[[]]],[[[]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [2,5,4,3,8,7,6,1] => ? = 13
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,8,7,6,5,4,3,1] => ? = 22
[[[[[]]]],[[[]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [5,4,3,2,8,7,6,1] => ? = 16
[[[[[[]]]]],[[]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [6,5,4,3,2,8,7,1] => ? = 18
[[[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [8,2,3,4,5,6,7,1] => ? = 13
[[[],[[[[[]]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [8,2,7,6,5,4,3,1] => ? = 23
[[[[[]]],[[[]]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [8,4,3,2,7,6,5,1] => ? = 19
[[[[[[[]]]]],[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [8,6,5,4,3,2,7,1] => ? = 23
[[[[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [8,3,4,5,6,7,2,1] => ? = 18
[[[[],[[[[]]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [8,3,7,6,5,4,2,1] => ? = 24
[[[[[[[]]]],[]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [8,6,5,4,3,7,2,1] => ? = 24
[[[[[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [8,7,3,4,5,6,2,1] => ? = 22
[[[[[[],[],[]]]]]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [8,7,4,5,6,3,2,1] => ? = 25
[[[[[[[],[]]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [8,7,6,4,5,3,2,1] => ? = 27
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000161
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
St000161: Binary trees ⟶ ℤResult quality: 46% values known / values provided: 49%distinct values known / distinct values provided: 46%
Values
[]
=> []
=> [1,0]
=> [.,.]
=> 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [.,[.,.]]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,.],[.,[.,.]]]]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,.]],.]]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [.,[[[[.,.],[.,.]],.],.]]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [.,[[[.,.],[[.,.],.]],.]]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> 10
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [.,[[[[.,.],.],.],[[.,.],.]]]
=> ? = 8
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],[.,[.,.]]]]
=> ? = 9
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> ? = 8
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> ? = 9
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [.,[[[.,.],.],[[[.,.],.],.]]]
=> ? = 9
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[[.,.],.],[[.,.],[.,.]]]]
=> ? = 10
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> ? = 9
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> ? = 10
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [.,[[.,.],[[[[.,.],.],.],.]]]
=> ? = 10
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> ? = 16
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> ? = 12
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> ? = 13
[[[[[[]]]]],[]]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> ? = 16
[[[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [.,[.,[[[[[.,.],.],.],.],.]]]
=> ? = 11
[[[],[[[[]]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> ? = 17
[[[[[[]]]],[]]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> ? = 17
[[[[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ? = 15
[[[[],[[[]]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 18
[[[[[]],[[]]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 17
[[[[[[]]],[]]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 18
[[[[[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ? = 18
[[[[[],[[]]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 19
[[[[[[]],[]]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 19
[[[[[[],[]]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 20
[[[[[[[]]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> ? = 8
[[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [.,[[[[[.,.],.],.],.],[[.,.],.]]]
=> ? = 9
[[],[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],[.,[.,.]]]]
=> ? = 10
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> ? = 8
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> ? = 10
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [.,[[[[[.,.],.],[.,.]],[.,.]],.]]
=> ? = 9
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [.,[[[[[.,.],.],[[.,.],.]],.],.]]
=> ? = 9
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [.,[[[[[.,.],.],[.,[.,.]]],.],.]]
=> ? = 10
[[],[],[[],[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [.,[[[[.,.],.],[[[.,.],.],.]],.]]
=> ? = 10
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [.,[[[[[.,.],[.,.]],.],.],[.,.]]]
=> ? = 9
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [.,[[[.,.],[[.,.],.]],[[.,.],.]]]
=> ? = 11
[[],[[[]]],[[[]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [.,[[[.,.],[.,[.,.]]],[.,[.,.]]]]
=> ? = 13
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 22
[[[[[]]]],[[[]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [.,[[.,[.,[.,[.,.]]]],[.,[.,.]]]]
=> ? = 16
[[[[[[]]]]],[[]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,[.,[.,.]]]]],[.,.]]]
=> ? = 18
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> ? = 22
[[[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> ? = 13
[[[],[[[[[]]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ? = 23
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [.,[.,[[[.,[.,.]],[.,.]],[.,.]]]]
=> ? = 16
[[[[[]]],[[[]]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 19
[[[[[[[]]]]],[]]]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> ? = 23
[[[[],[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> ? = 18
[[[[],[[[[]]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ? = 24
[[[[[[[]]]],[]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 24
[[[[[],[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> ? = 22
Description
The sum of the sizes of the right subtrees of a binary tree. This statistic corresponds to [[St000012]] under the Tamari Dyck path-binary tree bijection, and to [[St000018]] of the $312$-avoiding permutation corresponding to the binary tree. It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.
Matching statistic: St000067
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 49%
Values
[]
=> []
=> [1,0]
=> [[1]]
=> 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 4
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 4
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 5
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 5
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 5
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 6
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 7
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 5
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> 7
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 7
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 8
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> 8
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> 9
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> 10
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 6
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 6
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 7
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 8
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 6
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 7
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 7
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 8
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 8
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 9
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> 9
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]]
=> 10
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> 11
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 6
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 7
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 7
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 8
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 9
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 7
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 8
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 8
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 9
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 8
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 9
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 9
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 10
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? = 6
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 7
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 8
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 9
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? = 7
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 8
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 9
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 9
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 10
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 9
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 10
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,-1,1,0],[0,0,1,-1,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 10
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 16
[[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 9
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 12
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 13
[[[[[[]]]]],[]]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 16
[[[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[1,-1,1,-1,1,0,0],[0,1,-1,1,-1,1,0],[0,0,1,-1,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 11
[[[],[[[[]]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,0,0,1],[1,-1,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 17
[[[[[[]]]],[]]]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,-1,1],[1,0,0,0,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 17
[[[[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,-1,1,0],[1,-1,1,-1,1,-1,1],[0,1,-1,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 15
[[[[],[[[]]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,1,-1,0,0,1,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 18
[[[[[]],[[]]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,0,1],[0,1,0,-1,0,1,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 17
[[[[[[]]],[]]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,-1,1],[0,1,0,0,-1,1,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 18
[[[[[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,-1,1],[0,1,-1,1,-1,1,0],[1,-1,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 18
[[[[[],[[]]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,1,-1,0,1,0],[0,1,-1,0,1,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 19
[[[[[[]],[]]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,-1,1],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 19
[[[[[[],[]]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 20
[[[[[[[]]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ? = 21
[[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 7
[[],[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 8
[[],[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 9
[[],[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ? = 10
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 8
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 10
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,-1,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 9
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 9
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 10
[[],[],[[],[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 10
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 9
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,-1,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 11
[[],[[[]]],[[[]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,-1,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ? = 13
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ? = 22
[[[[[]]]],[[[]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,-1,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ? = 16
[[[[[[]]]]],[[]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 18
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,-1,1],[0,0,0,0,0,0,1,0]]
=> ? = 22
[[[],[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[1,-1,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> ? = 13
[[[],[[[[[]]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[0,1,-1,0,0,0,0,1],[1,-1,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ? = 23
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,-1,0,1,0,0],[1,0,-1,0,1,0,0,0],[0,0,0,1,0,-1,0,1],[0,0,1,0,-1,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ? = 16
[[[[[]]],[[[]]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,-1,0,0,1],[1,0,0,-1,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ? = 19
Description
The inversion number of the alternating sign matrix. If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as $$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$ When restricted to permutation matrices, this gives the usual inversion number of the permutation.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000057The Shynar inversion number of a standard tableau. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000448The number of pairs of vertices of a graph with distance 2. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001646The number of edges that can be added without increasing the maximal degree of a graph.