searching the database
Your data matches 33 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000255
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => 1
[.,[.,.]]
=> [2,1] => 1
[[.,.],.]
=> [1,2] => 1
[.,[.,[.,.]]]
=> [3,2,1] => 1
[.,[[.,.],.]]
=> [2,3,1] => 1
[[.,.],[.,.]]
=> [1,3,2] => 2
[[.,[.,.]],.]
=> [2,1,3] => 1
[[[.,.],.],.]
=> [1,2,3] => 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => 5
[[.,.],[[.,.],.]]
=> [1,3,4,2] => 3
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => 3
[[[.,.],.],[.,.]]
=> [1,2,4,3] => 3
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => 5
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => 3
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => 3
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => 3
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 14
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 9
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 11
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 7
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 4
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 14
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 6
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => 14
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => 6
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 4
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => 8
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => 4
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => 4
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St001876
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[.,.]
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 - 1
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ? = 5 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ? = 3 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ? = 3 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ? = 3 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 5 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 3 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 3 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 3 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 14 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 9 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 11 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 7 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 4 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ? = 14 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ? = 6 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ? = 14 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ? = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 8 - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 4 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? = 4 - 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 5 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 3 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 3 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ? = 3 - 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1 = 2 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 5 - 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 3 - 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 3 - 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 3 - 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1 = 2 - 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 14 - 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ? = 11 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 7 - 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 4 - 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ? = 14 - 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ? = 6 - 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ? = 14 - 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ? = 6 - 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 4 - 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 4 - 1
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ? = 8 - 1
[.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 4 - 1
[.,[[[[.,.],.],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 4 - 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1 = 2 - 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[.,[[[.,.],[.,[.,.]]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 5 - 1
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 3 - 1
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ? = 3 - 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St000100
Values
[.,.]
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 5
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 14
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 9
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 11
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 7
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 14
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 6
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 14
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 6
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 8
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 2
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 14
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 9
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 11
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 7
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 14
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 6
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 14
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 6
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 8
[.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4
[.,[[[[.,.],.],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The number of linear extensions of a poset.
Matching statistic: St000771
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 1
Description
The pebbling number of a connected graph.
Matching statistic: St000259
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8 - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5 - 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7 - 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6 - 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6 - 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8 - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5 - 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7 - 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6 - 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6 - 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 5 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 9 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 7 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 14 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8 - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 - 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 5 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 - 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 5 - 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 11 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 7 - 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6 - 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 14 - 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 6 - 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 - 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
Description
The determinant of the distance matrix of a connected graph.
The following 23 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000632The jump number of the poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001964The interval resolution global dimension of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!