searching the database
Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000047
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00038: Integer compositions —reverse⟶ Integer compositions
St000047: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000047: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 1
[1,1] => [1,1] => 1
[2] => [2] => 1
[1,1,1] => [1,1,1] => 1
[1,2] => [2,1] => 2
[2,1] => [1,2] => 1
[3] => [3] => 1
[1,1,1,1] => [1,1,1,1] => 1
[1,1,2] => [2,1,1] => 3
[1,2,1] => [1,2,1] => 2
[1,3] => [3,1] => 3
[2,1,1] => [1,1,2] => 1
[2,2] => [2,2] => 3
[3,1] => [1,3] => 1
[4] => [4] => 1
[1,1,1,1,1] => [1,1,1,1,1] => 1
[1,1,1,2] => [2,1,1,1] => 4
[1,1,2,1] => [1,2,1,1] => 3
[1,1,3] => [3,1,1] => 6
[1,2,1,1] => [1,1,2,1] => 2
[1,2,2] => [2,2,1] => 8
[1,3,1] => [1,3,1] => 3
[1,4] => [4,1] => 4
[2,1,1,1] => [1,1,1,2] => 1
[2,1,2] => [2,1,2] => 4
[2,2,1] => [1,2,2] => 3
[2,3] => [3,2] => 6
[3,1,1] => [1,1,3] => 1
[3,2] => [2,3] => 4
[4,1] => [1,4] => 1
[5] => [5] => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
[1,1,1,1,2] => [2,1,1,1,1] => 5
[1,1,1,2,1] => [1,2,1,1,1] => 4
[1,1,1,3] => [3,1,1,1] => 10
[1,1,2,1,1] => [1,1,2,1,1] => 3
[1,1,2,2] => [2,2,1,1] => 15
[1,1,3,1] => [1,3,1,1] => 6
[1,1,4] => [4,1,1] => 10
[1,2,1,1,1] => [1,1,1,2,1] => 2
[1,2,1,2] => [2,1,2,1] => 10
[1,2,2,1] => [1,2,2,1] => 8
[1,2,3] => [3,2,1] => 20
[1,3,1,1] => [1,1,3,1] => 3
[1,3,2] => [2,3,1] => 15
[1,4,1] => [1,4,1] => 4
[1,5] => [5,1] => 5
[2,1,1,1,1] => [1,1,1,1,2] => 1
[2,1,1,2] => [2,1,1,2] => 5
[2,1,2,1] => [1,2,1,2] => 4
Description
The number of standard immaculate tableaux of a given shape.
See Proposition 3.13 of [2] for a hook-length counting formula of these tableaux.
Matching statistic: St000255
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => 1
[1,1] => [1,0,1,0]
=> [1,2] => 1
[2] => [1,1,0,0]
=> [2,1] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 2
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[3] => [1,1,1,0,0,0]
=> [3,1,2] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1
[4] => [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 6
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 8
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 6
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => 10
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 15
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => 6
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => 10
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 10
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 8
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => 20
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,2,3,6,5] => 15
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 5
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 4
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000100
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [.,.]
=> ([],1)
=> ? = 1
[1,1] => [1,0,1,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1
[2] => [1,1,0,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1
[1,2] => [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[2,1] => [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1
[3] => [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 8
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 10
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 15
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> 6
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 10
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 10
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 8
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 20
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 15
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 10
Description
The number of linear extensions of a poset.
Matching statistic: St000045
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000045: Binary trees ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 91%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000045: Binary trees ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 91%
Values
[1] => [1,0]
=> [.,.]
=> ? = 1
[1,1] => [1,0,1,0]
=> [[.,.],.]
=> ? = 1
[2] => [1,1,0,0]
=> [.,[.,.]]
=> ? = 1
[1,1,1] => [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 2
[2,1] => [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 1
[3] => [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 3
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],.]
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],.]
=> 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 6
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 8
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 4
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 6
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],.]
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[[[.,.],.],.],[.,[.,.]]]
=> 10
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> 15
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[[[.,.],.],[.,[.,.]]],.]
=> 6
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> 10
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 10
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> 8
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> 20
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[[[.,.],[.,[.,.]]],.],.]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> 15
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> 5
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> 4
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> 10
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[[[.,[.,.]],[.,.]],.],.]
=> 3
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> 15
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> ? = 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> ? = 6
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> ? = 5
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> ? = 2
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,.],[.,[.,[.,.]]]],[.,.]]
=> ? = 24
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 6
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[[[[[.,[.,.]],.],.],.],.],.]
=> ? = 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [[[[.,[.,.]],.],.],[.,[.,.]]]
=> ? = 15
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [[[.,[.,.]],.],[.,[.,[.,.]]]]
=> ? = 20
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],.]
=> ? = 10
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 15
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[[[[.,[.,[.,.]]],.],.],.],.]
=> ? = 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[.,[.,.]]],.],.],[.,.]]
=> ? = 6
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ? = 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [[[.,[.,[.,[.,.]]]],.],[.,.]]
=> ? = 6
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ? = 1
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> ? = 6
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ? = 1
Description
The number of linear extensions of a binary tree.
Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape.
Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations.
Also, the number of permutations which give this tree shape when inserted in a binary search tree.
Also, the number of permutations which increasing / decreasing tree is of this shape.
Matching statistic: St001881
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001881: Lattices ⟶ ℤResult quality: 27% ●values known / values provided: 32%●distinct values known / distinct values provided: 27%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001881: Lattices ⟶ ℤResult quality: 27% ●values known / values provided: 32%●distinct values known / distinct values provided: 27%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,1] => [2] => ([],2)
=> ([],1)
=> 1
[2] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1] => [3] => ([],3)
=> ([],1)
=> 1
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1] => [1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 1
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,1] => [4] => ([],4)
=> ([],1)
=> 1
[1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
[1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[1,1,1,1,1] => [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 6
[1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 8
[1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 4
[2,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 4
[2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 6
[3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 4
[4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[1,1,1,1,1,1] => [6] => ([],6)
=> ([],1)
=> 1
[1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 5
[1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,15),(1,20),(1,21),(1,23),(1,29),(1,69),(2,10),(2,14),(2,18),(2,19),(2,22),(2,28),(2,69),(3,13),(3,17),(3,19),(3,21),(3,25),(3,31),(3,68),(4,12),(4,16),(4,18),(4,20),(4,24),(4,30),(4,68),(5,14),(5,15),(5,16),(5,17),(5,27),(5,33),(5,67),(6,10),(6,11),(6,12),(6,13),(6,26),(6,32),(6,67),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,66),(8,22),(8,23),(8,24),(8,25),(8,26),(8,27),(8,66),(9,66),(9,67),(9,68),(9,69),(10,34),(10,46),(10,58),(10,59),(10,87),(11,35),(11,47),(11,60),(11,61),(11,87),(12,36),(12,48),(12,58),(12,60),(12,88),(13,37),(13,49),(13,59),(13,61),(13,88),(14,38),(14,50),(14,62),(14,63),(14,87),(15,39),(15,51),(15,64),(15,65),(15,87),(16,40),(16,52),(16,62),(16,64),(16,88),(17,41),(17,53),(17,63),(17,65),(17,88),(18,42),(18,54),(18,58),(18,62),(18,86),(19,43),(19,55),(19,59),(19,63),(19,86),(20,44),(20,56),(20,60),(20,64),(20,86),(21,45),(21,57),(21,61),(21,65),(21,86),(22,34),(22,38),(22,42),(22,43),(22,89),(23,35),(23,39),(23,44),(23,45),(23,89),(24,36),(24,40),(24,42),(24,44),(24,90),(25,37),(25,41),(25,43),(25,45),(25,90),(26,34),(26,35),(26,36),(26,37),(26,91),(27,38),(27,39),(27,40),(27,41),(27,91),(28,46),(28,50),(28,54),(28,55),(28,89),(29,47),(29,51),(29,56),(29,57),(29,89),(30,48),(30,52),(30,54),(30,56),(30,90),(31,49),(31,53),(31,55),(31,57),(31,90),(32,46),(32,47),(32,48),(32,49),(32,91),(33,50),(33,51),(33,52),(33,53),(33,91),(34,70),(34,71),(34,93),(35,72),(35,73),(35,93),(36,70),(36,72),(36,94),(37,71),(37,73),(37,94),(38,74),(38,75),(38,93),(39,76),(39,77),(39,93),(40,74),(40,76),(40,94),(41,75),(41,77),(41,94),(42,70),(42,74),(42,95),(43,71),(43,75),(43,95),(44,72),(44,76),(44,95),(45,73),(45,77),(45,95),(46,78),(46,79),(46,93),(47,80),(47,81),(47,93),(48,78),(48,80),(48,94),(49,79),(49,81),(49,94),(50,82),(50,83),(50,93),(51,84),(51,85),(51,93),(52,82),(52,84),(52,94),(53,83),(53,85),(53,94),(54,78),(54,82),(54,95),(55,79),(55,83),(55,95),(56,80),(56,84),(56,95),(57,81),(57,85),(57,95),(58,70),(58,78),(58,92),(59,71),(59,79),(59,92),(60,72),(60,80),(60,92),(61,73),(61,81),(61,92),(62,74),(62,82),(62,92),(63,75),(63,83),(63,92),(64,76),(64,84),(64,92),(65,77),(65,85),(65,92),(66,89),(66,90),(66,91),(67,87),(67,88),(67,91),(68,86),(68,88),(68,90),(69,86),(69,87),(69,89),(70,96),(71,96),(72,96),(73,96),(74,96),(75,96),(76,96),(77,96),(78,96),(79,96),(80,96),(81,96),(82,96),(83,96),(84,96),(85,96),(86,92),(86,95),(87,92),(87,93),(88,92),(88,94),(89,93),(89,95),(90,94),(90,95),(91,93),(91,94),(92,96),(93,96),(94,96),(95,96)],97)
=> ? = 10
[1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
[1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(2,11),(2,15),(2,20),(2,21),(2,23),(2,50),(3,10),(3,14),(3,18),(3,19),(3,22),(3,50),(4,13),(4,17),(4,19),(4,21),(4,25),(4,49),(5,12),(5,16),(5,18),(5,20),(5,24),(5,49),(6,14),(6,15),(6,16),(6,17),(6,27),(6,48),(7,10),(7,11),(7,12),(7,13),(7,26),(7,48),(8,9),(8,48),(8,49),(8,50),(9,59),(9,60),(9,61),(10,28),(10,40),(10,41),(10,63),(11,29),(11,42),(11,43),(11,63),(12,30),(12,40),(12,42),(12,64),(13,31),(13,41),(13,43),(13,64),(14,32),(14,44),(14,45),(14,63),(15,33),(15,46),(15,47),(15,63),(16,34),(16,44),(16,46),(16,64),(17,35),(17,45),(17,47),(17,64),(18,36),(18,40),(18,44),(18,62),(19,37),(19,41),(19,45),(19,62),(20,38),(20,42),(20,46),(20,62),(21,39),(21,43),(21,47),(21,62),(22,28),(22,32),(22,36),(22,37),(22,59),(23,29),(23,33),(23,38),(23,39),(23,59),(24,30),(24,34),(24,36),(24,38),(24,60),(25,31),(25,35),(25,37),(25,39),(25,60),(26,28),(26,29),(26,30),(26,31),(26,61),(27,32),(27,33),(27,34),(27,35),(27,61),(28,51),(28,52),(28,66),(29,53),(29,54),(29,66),(30,51),(30,53),(30,67),(31,52),(31,54),(31,67),(32,55),(32,56),(32,66),(33,57),(33,58),(33,66),(34,55),(34,57),(34,67),(35,56),(35,58),(35,67),(36,51),(36,55),(36,65),(37,52),(37,56),(37,65),(38,53),(38,57),(38,65),(39,54),(39,58),(39,65),(40,51),(40,68),(41,52),(41,68),(42,53),(42,68),(43,54),(43,68),(44,55),(44,68),(45,56),(45,68),(46,57),(46,68),(47,58),(47,68),(48,61),(48,63),(48,64),(49,60),(49,62),(49,64),(50,59),(50,62),(50,63),(51,69),(52,69),(53,69),(54,69),(55,69),(56,69),(57,69),(58,69),(59,65),(59,66),(60,65),(60,67),(61,66),(61,67),(62,65),(62,68),(63,66),(63,68),(64,67),(64,68),(65,69),(66,69),(67,69),(68,69)],70)
=> ? = 15
[1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 6
[1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,15),(1,26),(1,27),(1,32),(1,33),(1,41),(1,42),(1,91),(1,94),(2,14),(2,23),(2,25),(2,29),(2,31),(2,40),(2,42),(2,90),(2,93),(3,13),(3,22),(3,24),(3,28),(3,30),(3,40),(3,41),(3,89),(3,92),(4,18),(4,24),(4,25),(4,34),(4,35),(4,43),(4,44),(4,86),(4,94),(5,17),(5,22),(5,26),(5,36),(5,38),(5,43),(5,45),(5,87),(5,93),(6,16),(6,23),(6,27),(6,37),(6,39),(6,44),(6,45),(6,88),(6,92),(7,21),(7,30),(7,31),(7,36),(7,37),(7,46),(7,47),(7,86),(7,91),(8,20),(8,28),(8,32),(8,34),(8,39),(8,46),(8,48),(8,87),(8,90),(9,19),(9,29),(9,33),(9,35),(9,38),(9,47),(9,48),(9,88),(9,89),(10,19),(10,20),(10,21),(10,49),(10,92),(10,93),(10,94),(11,16),(11,17),(11,18),(11,49),(11,89),(11,90),(11,91),(12,13),(12,14),(12,15),(12,49),(12,86),(12,87),(12,88),(13,53),(13,54),(13,98),(13,100),(13,134),(14,53),(14,55),(14,99),(14,101),(14,135),(15,54),(15,55),(15,102),(15,103),(15,136),(16,56),(16,58),(16,107),(16,108),(16,134),(17,57),(17,58),(17,106),(17,109),(17,135),(18,56),(18,57),(18,104),(18,105),(18,136),(19,59),(19,61),(19,113),(19,114),(19,134),(20,60),(20,61),(20,112),(20,115),(20,135),(21,59),(21,60),(21,110),(21,111),(21,136),(22,63),(22,65),(22,80),(22,98),(22,106),(22,131),(23,64),(23,66),(23,81),(23,99),(23,107),(23,131),(24,62),(24,65),(24,82),(24,100),(24,104),(24,132),(25,62),(25,66),(25,83),(25,101),(25,105),(25,133),(26,63),(26,67),(26,84),(26,102),(26,109),(26,133),(27,64),(27,67),(27,85),(27,103),(27,108),(27,132),(28,69),(28,74),(28,82),(28,98),(28,112),(28,128),(29,70),(29,75),(29,83),(29,99),(29,113),(29,128),(30,68),(30,74),(30,80),(30,100),(30,110),(30,129),(31,68),(31,75),(31,81),(31,101),(31,111),(31,130),(32,69),(32,76),(32,85),(32,102),(32,115),(32,130),(33,70),(33,76),(33,84),(33,103),(33,114),(33,129),(34,72),(34,79),(34,82),(34,105),(34,115),(34,126),(35,71),(35,79),(35,83),(35,104),(35,114),(35,125),(36,73),(36,77),(36,80),(36,109),(36,111),(36,126),(37,73),(37,78),(37,81),(37,108),(37,110),(37,125),(38,71),(38,77),(38,84),(38,106),(38,113),(38,127),(39,72),(39,78),(39,85),(39,107),(39,112),(39,127),(40,50),(40,53),(40,62),(40,68),(40,128),(40,131),(41,50),(41,54),(41,63),(41,69),(41,129),(41,132),(42,50),(42,55),(42,64),(42,70),(42,130),(42,133),(43,51),(43,57),(43,65),(43,71),(43,126),(43,133),(44,51),(44,56),(44,66),(44,72),(44,125),(44,132),(45,51),(45,58),(45,67),(45,73),(45,127),(45,131),(46,52),(46,60),(46,74),(46,78),(46,126),(46,130),(47,52),(47,59),(47,75),(47,77),(47,125),(47,129),(48,52),(48,61),(48,76),(48,79),(48,127),(48,128),(49,134),(49,135),(49,136),(50,95),(50,147),(50,148),(51,96),(51,146),(51,148),(52,97),(52,146),(52,147),(53,95),(53,118),(53,151),(54,95),(54,116),(54,149),(55,95),(55,117),(55,150),(56,96),(56,120),(56,149),(57,96),(57,119),(57,150),(58,96),(58,121),(58,151),(59,97),(59,123),(59,149),(60,97),(60,122),(60,150),(61,97),(61,124),(61,151),(62,118),(62,142),(62,148),(63,116),(63,140),(63,148),(64,117),(64,141),(64,148),(65,119),(65,137),(65,148),(66,120),(66,138),(66,148),(67,121),(67,139),(67,148),(68,118),(68,143),(68,147),(69,116),(69,144),(69,147),(70,117),(70,145),(70,147),(71,119),(71,145),(71,146),(72,120),(72,144),(72,146),(73,121),(73,143),(73,146),(74,122),(74,137),(74,147),(75,123),(75,138),(75,147),(76,124),(76,139),(76,147),(77,123),(77,140),(77,146),(78,122),(78,141),(78,146),(79,124),(79,142),(79,146),(80,137),(80,140),(80,143),(81,138),(81,141),(81,143),(82,137),(82,142),(82,144),(83,138),(83,142),(83,145),(84,139),(84,140),(84,145),(85,139),(85,141),(85,144),(86,100),(86,101),(86,125),(86,126),(86,136),(87,98),(87,102),(87,126),(87,127),(87,135),(88,99),(88,103),(88,125),(88,127),(88,134),(89,104),(89,106),(89,128),(89,129),(89,134),(90,105),(90,107),(90,128),(90,130),(90,135),(91,108),(91,109),(91,129),(91,130),(91,136),(92,110),(92,112),(92,131),(92,132),(92,134),(93,111),(93,113),(93,131),(93,133),(93,135),(94,114),(94,115),(94,132),(94,133),(94,136),(95,152),(96,152),(97,152),(98,116),(98,137),(98,151),(99,117),(99,138),(99,151),(100,118),(100,137),(100,149),(101,118),(101,138),(101,150),(102,116),(102,139),(102,150),(103,117),(103,139),(103,149),(104,119),(104,142),(104,149),(105,120),(105,142),(105,150),(106,119),(106,140),(106,151),(107,120),(107,141),(107,151),(108,121),(108,141),(108,149),(109,121),(109,140),(109,150),(110,122),(110,143),(110,149),(111,123),(111,143),(111,150),(112,122),(112,144),(112,151),(113,123),(113,145),(113,151),(114,124),(114,145),(114,149),(115,124),(115,144),(115,150),(116,152),(117,152),(118,152),(119,152),(120,152),(121,152),(122,152),(123,152),(124,152),(125,138),(125,146),(125,149),(126,137),(126,146),(126,150),(127,139),(127,146),(127,151),(128,142),(128,147),(128,151),(129,140),(129,147),(129,149),(130,141),(130,147),(130,150),(131,143),(131,148),(131,151),(132,144),(132,148),(132,149),(133,145),(133,148),(133,150),(134,149),(134,151),(135,150),(135,151),(136,149),(136,150),(137,152),(138,152),(139,152),(140,152),(141,152),(142,152),(143,152),(144,152),(145,152),(146,152),(147,152),(148,152),(149,152),(150,152),(151,152)],153)
=> ? = 10
[1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 10
[1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 8
[1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ? = 20
[1,3,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ? = 15
[1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 4
[1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 5
[2,1,1,1,1] => [1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 5
[2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 4
[2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ? = 10
[2,2,1,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ? = 15
[2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 6
[2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 10
[3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ? = 5
[3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 4
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ? = 10
[4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ? = 5
[5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 1
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([],1)
=> 1
[1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? = 6
[1,1,1,1,2,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 5
[1,2,1,1,1,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,21),(1,25),(1,33),(1,37),(1,54),(1,56),(1,140),(1,143),(1,147),(1,153),(2,20),(2,24),(2,32),(2,36),(2,53),(2,55),(2,140),(2,142),(2,146),(2,152),(3,23),(3,27),(3,35),(3,39),(3,53),(3,57),(3,141),(3,143),(3,144),(3,150),(4,22),(4,26),(4,34),(4,38),(4,54),(4,58),(4,141),(4,142),(4,145),(4,151),(5,30),(5,31),(5,42),(5,43),(5,52),(5,60),(5,142),(5,143),(5,149),(5,155),(6,28),(6,29),(6,40),(6,41),(6,52),(6,59),(6,140),(6,141),(6,148),(6,154),(7,17),(7,22),(7,23),(7,29),(7,45),(7,62),(7,67),(7,68),(7,146),(7,147),(7,149),(8,16),(8,20),(8,21),(8,28),(8,44),(8,61),(8,65),(8,66),(8,144),(8,145),(8,149),(9,18),(9,24),(9,26),(9,31),(9,46),(9,63),(9,69),(9,71),(9,144),(9,147),(9,148),(10,19),(10,25),(10,27),(10,30),(10,47),(10,64),(10,70),(10,72),(10,145),(10,146),(10,148),(11,16),(11,32),(11,33),(11,40),(11,48),(11,62),(11,69),(11,70),(11,150),(11,151),(11,155),(12,17),(12,34),(12,35),(12,41),(12,49),(12,61),(12,71),(12,72),(12,152),(12,153),(12,155),(13,18),(13,36),(13,38),(13,43),(13,50),(13,64),(13,65),(13,67),(13,150),(13,153),(13,154),(14,19),(14,37),(14,39),(14,42),(14,51),(14,63),(14,66),(14,68),(14,151),(14,152),(14,154),(15,44),(15,45),(15,46),(15,47),(15,48),(15,49),(15,50),(15,51),(15,55),(15,56),(15,57),(15,58),(15,59),(15,60),(16,88),(16,89),(16,96),(16,136),(16,292),(16,293),(16,297),(17,90),(17,91),(17,97),(17,137),(17,294),(17,295),(17,297),(18,92),(18,94),(18,99),(18,138),(18,292),(18,295),(18,296),(19,93),(19,95),(19,98),(19,139),(19,293),(19,294),(19,296),(20,76),(20,88),(20,112),(20,184),(20,208),(20,232),(20,325),(21,77),(21,89),(21,113),(21,185),(21,209),(21,232),(21,326),(22,78),(22,90),(22,114),(22,186),(22,211),(22,233),(22,325),(23,79),(23,91),(23,115),(23,187),(23,210),(23,233),(23,326),(24,80),(24,92),(24,116),(24,190),(24,208),(24,234),(24,324),(25,81),(25,93),(25,117),(25,191),(25,209),(25,235),(25,324),(26,82),(26,94),(26,118),(26,188),(26,211),(26,234),(26,323),(27,83),(27,95),(27,119),(27,189),(27,210),(27,235),(27,323),(28,84),(28,96),(28,120),(28,192),(28,212),(28,232),(28,323),(29,85),(29,97),(29,121),(29,193),(29,212),(29,233),(29,324),(30,86),(30,98),(30,122),(30,194),(30,213),(30,235),(30,325),(31,87),(31,99),(31,123),(31,195),(31,213),(31,234),(31,326),(32,80),(32,88),(32,124),(32,198),(32,214),(32,236),(32,329),(33,81),(33,89),(33,125),(33,199),(33,215),(33,236),(33,330),(34,82),(34,90),(34,126),(34,196),(34,217),(34,237),(34,329),(35,83),(35,91),(35,127),(35,197),(35,216),(35,237),(35,330),(36,76),(36,92),(36,128),(36,202),(36,214),(36,238),(36,328),(37,77),(37,93),(37,129),(37,203),(37,215),(37,239),(37,328),(38,78),(38,94),(38,130),(38,200),(38,217),(38,238),(38,327),(39,79),(39,95),(39,131),(39,201),(39,216),(39,239),(39,327),(40,85),(40,96),(40,132),(40,204),(40,218),(40,236),(40,327),(41,84),(41,97),(41,133),(41,205),(41,218),(41,237),(41,328),(42,87),(42,98),(42,134),(42,207),(42,219),(42,239),(42,329),(43,86),(43,99),(43,135),(43,206),(43,219),(43,238),(43,330),(44,100),(44,104),(44,105),(44,112),(44,113),(44,120),(44,136),(44,220),(44,221),(44,225),(45,101),(45,106),(45,107),(45,114),(45,115),(45,121),(45,137),(45,222),(45,223),(45,225),(46,102),(46,108),(46,110),(46,116),(46,118),(46,123),(46,138),(46,220),(46,223),(46,224),(47,103),(47,109),(47,111),(47,117),(47,119),(47,122),(47,139),(47,221),(47,222),(47,224),(48,101),(48,108),(48,109),(48,124),(48,125),(48,132),(48,136),(48,226),(48,227),(48,231),(49,100),(49,110),(49,111),(49,126),(49,127),(49,133),(49,137),(49,228),(49,229),(49,231),(50,103),(50,104),(50,106),(50,128),(50,130),(50,135),(50,138),(50,226),(50,229),(50,230),(51,102),(51,105),(51,107),(51,129),(51,131),(51,134),(51,139),(51,227),(51,228),(51,230),(52,75),(52,212),(52,213),(52,218),(52,219),(52,304),(53,73),(53,208),(53,210),(53,214),(53,216),(53,304),(54,74),(54,209),(54,211),(54,215),(54,217),(54,304),(55,73),(55,112),(55,116),(55,124),(55,128),(55,156),(55,158),(55,222),(55,228),(56,74),(56,113),(56,117),(56,125),(56,129),(56,156),(56,159),(56,223),(56,229),(57,73),(57,115),(57,119),(57,127),(57,131),(57,157),(57,159),(57,220),(57,226),(58,74),(58,114),(58,118),(58,126),(58,130),(58,157),(58,158),(58,221),(58,227),(59,75),(59,120),(59,121),(59,132),(59,133),(59,156),(59,157),(59,224),(59,230),(60,75),(60,122),(60,123),(60,134),(60,135),(60,158),(60,159),(60,225),(60,231),(61,84),(61,100),(61,184),(61,185),(61,196),(61,197),(61,297),(62,85),(62,101),(62,186),(62,187),(62,198),(62,199),(62,297),(63,87),(63,102),(63,188),(63,190),(63,201),(63,203),(63,296),(64,86),(64,103),(64,189),(64,191),(64,200),(64,202),(64,296),(65,76),(65,104),(65,185),(65,192),(65,200),(65,206),(65,292),(66,77),(66,105),(66,184),(66,192),(66,201),(66,207),(66,293),(67,78),(67,106),(67,187),(67,193),(67,202),(67,206),(67,295),(68,79),(68,107),(68,186),(68,193),(68,203),(68,207),(68,294),(69,80),(69,108),(69,188),(69,195),(69,199),(69,204),(69,292),(70,81),(70,109),(70,189),(70,194),(70,198),(70,204),(70,293),(71,82),(71,110),(71,190),(71,195),(71,197),(71,205),(71,295),(72,83),(72,111),(72,191),(72,194),(72,196),(72,205),(72,294),(73,240),(73,242),(73,246),(73,248),(73,337),(74,241),(74,243),(74,247),(74,249),(74,337),(75,244),(75,245),(75,250),(75,251),(75,337),(76,172),(76,317),(76,346),(76,352),(77,173),(77,318),(77,346),(77,353),(78,174),(78,320),(78,347),(78,352),(79,175),(79,319),(79,347),(79,353),(80,176),(80,317),(80,348),(80,351),(81,177),(81,318),(81,349),(81,351),(82,178),(82,320),(82,348),(82,350),(83,179),(83,319),(83,349),(83,350),(84,180),(84,321),(84,346),(84,350),(85,181),(85,321),(85,347),(85,351),(86,182),(86,322),(86,349),(86,352),(87,183),(87,322),(87,348),(87,353),(88,160),(88,284),(88,317),(88,364),(89,161),(89,284),(89,318),(89,365),(90,162),(90,285),(90,320),(90,364),(91,163),(91,285),(91,319),(91,365),(92,164),(92,286),(92,317),(92,363),(93,165),(93,287),(93,318),(93,363),(94,166),(94,286),(94,320),(94,362),(95,167),(95,287),(95,319),(95,362),(96,168),(96,284),(96,321),(96,362),(97,169),(97,285),(97,321),(97,363),(98,170),(98,287),(98,322),(98,364),(99,171),(99,286),(99,322),(99,365),(100,180),(100,260),(100,261),(100,272),(100,273),(100,316),(101,181),(101,262),(101,263),(101,274),(101,275),(101,316),(102,183),(102,264),(102,266),(102,277),(102,279),(102,315),(103,182),(103,265),(103,267),(103,276),(103,278),(103,315),(104,172),(104,261),(104,268),(104,276),(104,282),(104,311),(105,173),(105,260),(105,268),(105,277),(105,283),(105,312),(106,174),(106,263),(106,269),(106,278),(106,282),(106,314),(107,175),(107,262),(107,269),(107,279),(107,283),(107,313),(108,176),(108,264),(108,271),(108,275),(108,280),(108,311),(109,177),(109,265),(109,270),(109,274),(109,280),(109,312),(110,178),(110,266),(110,271),(110,273),(110,281),(110,314),(111,179),(111,267),(111,270),(111,272),(111,281),(111,313),(112,160),(112,172),(112,240),(112,252),(112,260),(112,340),(113,161),(113,173),(113,241),(113,252),(113,261),(113,341),(114,162),(114,174),(114,243),(114,253),(114,262),(114,340),(115,163),(115,175),(115,242),(115,253),(115,263),(115,341),(116,164),(116,176),(116,240),(116,254),(116,266),(116,339),(117,165),(117,177),(117,241),(117,255),(117,267),(117,339),(118,166),(118,178),(118,243),(118,254),(118,264),(118,338),(119,167),(119,179),(119,242),(119,255),(119,265),(119,338),(120,168),(120,180),(120,244),(120,252),(120,268),(120,338),(121,169),(121,181),(121,244),(121,253),(121,269),(121,339),(122,170),(122,182),(122,245),(122,255),(122,270),(122,340),(123,171),(123,183),(123,245),(123,254),(123,271),(123,341),(124,160),(124,176),(124,246),(124,256),(124,274),(124,344),(125,161),(125,177),(125,247),(125,256),(125,275),(125,345),(126,162),(126,178),(126,249),(126,257),(126,272),(126,344),(127,163),(127,179),(127,248),(127,257),(127,273),(127,345),(128,164),(128,172),(128,246),(128,258),(128,278),(128,343),(129,165),(129,173),(129,247),(129,259),(129,279),(129,343),(130,166),(130,174),(130,249),(130,258),(130,276),(130,342),(131,167),(131,175),(131,248),(131,259),(131,277),(131,342),(132,168),(132,181),(132,250),(132,256),(132,280),(132,342),(133,169),(133,180),(133,250),(133,257),(133,281),(133,343),(134,170),(134,183),(134,251),(134,259),(134,283),(134,344),(135,171),(135,182),(135,251),(135,258),(135,282),(135,345),(136,160),(136,161),(136,168),(136,311),(136,312),(136,316),(137,162),(137,163),(137,169),(137,313),(137,314),(137,316),(138,164),(138,166),(138,171),(138,311),(138,314),(138,315),(139,165),(139,167),(139,170),(139,312),(139,313),(139,315),(140,156),(140,232),(140,236),(140,304),(140,324),(140,328),(141,157),(141,233),(141,237),(141,304),(141,323),(141,327),(142,158),(142,234),(142,238),(142,304),(142,325),(142,329),(143,159),(143,235),(143,239),(143,304),(143,326),(143,330),(144,197),(144,201),(144,208),(144,220),(144,292),(144,323),(144,326),(145,196),(145,200),(145,209),(145,221),(145,293),(145,323),(145,325),(146,198),(146,202),(146,210),(146,222),(146,294),(146,324),(146,325),(147,199),(147,203),(147,211),(147,223),(147,295),(147,324),(147,326),(148,204),(148,205),(148,213),(148,224),(148,296),(148,323),(148,324),(149,206),(149,207),(149,212),(149,225),(149,297),(149,325),(149,326),(150,187),(150,189),(150,214),(150,226),(150,292),(150,327),(150,330),(151,186),(151,188),(151,215),(151,227),(151,293),(151,327),(151,329),(152,184),(152,190),(152,216),(152,228),(152,294),(152,328),(152,329),(153,185),(153,191),(153,217),(153,229),(153,295),(153,328),(153,330),(154,192),(154,193),(154,219),(154,230),(154,296),(154,327),(154,328),(155,194),(155,195),(155,218),(155,231),(155,297),(155,329),(155,330),(156,252),(156,256),(156,337),(156,339),(156,343),(157,253),(157,257),(157,337),(157,338),(157,342),(158,254),(158,258),(158,337),(158,340),(158,344),(159,255),(159,259),(159,337),(159,341),(159,345),(160,288),(160,331),(160,370),(161,288),(161,332),(161,371),(162,289),(162,334),(162,370),(163,289),(163,333),(163,371),(164,290),(164,331),(164,369),(165,291),(165,332),(165,369),(166,290),(166,334),(166,368),(167,291),(167,333),(167,368),(168,288),(168,335),(168,368),(169,289),(169,335),(169,369),(170,291),(170,336),(170,370),(171,290),(171,336),(171,371),(172,331),(172,354),(172,360),(173,332),(173,354),(173,361),(174,334),(174,355),(174,360),(175,333),(175,355),(175,361),(176,331),(176,356),(176,359),(177,332),(177,357),(177,359),(178,334),(178,356),(178,358),(179,333),(179,357),(179,358),(180,335),(180,354),(180,358),(181,335),(181,355),(181,359),(182,336),(182,357),(182,360),(183,336),(183,356),(183,361),(184,260),(184,298),(184,346),(184,364),(185,261),(185,299),(185,346),(185,365),(186,262),(186,301),(186,347),(186,364),(187,263),(187,300),(187,347),(187,365),(188,264),(188,301),(188,348),(188,362),(189,265),(189,300),(189,349),(189,362),(190,266),(190,298),(190,348),(190,363),(191,267),(191,299),(191,349),(191,363),(192,268),(192,302),(192,346),(192,362),(193,269),(193,302),(193,347),(193,363),(194,270),(194,303),(194,349),(194,364),(195,271),(195,303),(195,348),(195,365),(196,272),(196,299),(196,350),(196,364),(197,273),(197,298),(197,350),(197,365),(198,274),(198,300),(198,351),(198,364),(199,275),(199,301),(199,351),(199,365),(200,276),(200,299),(200,352),(200,362),(201,277),(201,298),(201,353),(201,362),(202,278),(202,300),(202,352),(202,363),(203,279),(203,301),(203,353),(203,363),(204,280),(204,303),(204,351),(204,362),(205,281),(205,303),(205,350),(205,363),(206,282),(206,302),(206,352),(206,365),(207,283),(207,302),(207,353),(207,364),(208,240),(208,298),(208,317),(208,367),(209,241),(209,299),(209,318),(209,367),(210,242),(210,300),(210,319),(210,367),(211,243),(211,301),(211,320),(211,367),(212,244),(212,302),(212,321),(212,367),(213,245),(213,303),(213,322),(213,367),(214,246),(214,300),(214,317),(214,366),(215,247),(215,301),(215,318),(215,366),(216,248),(216,298),(216,319),(216,366),(217,249),(217,299),(217,320),(217,366),(218,250),(218,303),(218,321),(218,366),(219,251),(219,302),(219,322),(219,366),(220,240),(220,273),(220,277),(220,311),(220,338),(220,341),(221,241),(221,272),(221,276),(221,312),(221,338),(221,340),(222,242),(222,274),(222,278),(222,313),(222,339),(222,340),(223,243),(223,275),(223,279),(223,314),(223,339),(223,341),(224,245),(224,280),(224,281),(224,315),(224,338),(224,339),(225,244),(225,282),(225,283),(225,316),(225,340),(225,341),(226,246),(226,263),(226,265),(226,311),(226,342),(226,345),(227,247),(227,262),(227,264),(227,312),(227,342),(227,344),(228,248),(228,260),(228,266),(228,313),(228,343),(228,344),(229,249),(229,261),(229,267),(229,314),(229,343),(229,345),(230,251),(230,268),(230,269),(230,315),(230,342),(230,343),(231,250),(231,270),(231,271),(231,316),(231,344),(231,345),(232,252),(232,284),(232,346),(232,367),(233,253),(233,285),(233,347),(233,367),(234,254),(234,286),(234,348),(234,367),(235,255),(235,287),(235,349),(235,367),(236,256),(236,284),(236,351),(236,366),(237,257),(237,285),(237,350),(237,366),(238,258),(238,286),(238,352),(238,366),(239,259),(239,287),(239,353),(239,366),(240,305),(240,331),(240,372),(241,306),(241,332),(241,372),(242,307),(242,333),(242,372),(243,308),(243,334),(243,372),(244,309),(244,335),(244,372),(245,310),(245,336),(245,372),(246,307),(246,331),(246,373),(247,308),(247,332),(247,373),(248,305),(248,333),(248,373),(249,306),(249,334),(249,373),(250,310),(250,335),(250,373),(251,309),(251,336),(251,373),(252,288),(252,354),(252,372),(253,289),(253,355),(253,372),(254,290),(254,356),(254,372),(255,291),(255,357),(255,372),(256,288),(256,359),(256,373),(257,289),(257,358),(257,373),(258,290),(258,360),(258,373),(259,291),(259,361),(259,373),(260,305),(260,354),(260,370),(261,306),(261,354),(261,371),(262,308),(262,355),(262,370),(263,307),(263,355),(263,371),(264,308),(264,356),(264,368),(265,307),(265,357),(265,368),(266,305),(266,356),(266,369),(267,306),(267,357),(267,369),(268,309),(268,354),(268,368),(269,309),(269,355),(269,369),(270,310),(270,357),(270,370),(271,310),(271,356),(271,371),(272,306),(272,358),(272,370),(273,305),(273,358),(273,371),(274,307),(274,359),(274,370),(275,308),(275,359),(275,371),(276,306),(276,360),(276,368),(277,305),(277,361),(277,368),(278,307),(278,360),(278,369),(279,308),(279,361),(279,369),(280,310),(280,359),(280,368),(281,310),(281,358),(281,369),(282,309),(282,360),(282,371),(283,309),(283,361),(283,370),(284,288),(284,374),(285,289),(285,374),(286,290),(286,374),(287,291),(287,374),(288,375),(289,375),(290,375),(291,375),(292,311),(292,317),(292,362),(292,365),(293,312),(293,318),(293,362),(293,364),(294,313),(294,319),(294,363),(294,364),(295,314),(295,320),(295,363),(295,365),(296,315),(296,322),(296,362),(296,363),(297,316),(297,321),(297,364),(297,365),(298,305),(298,374),(299,306),(299,374),(300,307),(300,374),(301,308),(301,374),(302,309),(302,374),(303,310),(303,374),(304,337),(304,366),(304,367),(305,375),(306,375),(307,375),(308,375),(309,375),(310,375),(311,331),(311,368),(311,371),(312,332),(312,368),(312,370),(313,333),(313,369),(313,370),(314,334),(314,369),(314,371),(315,336),(315,368),(315,369),(316,335),(316,370),(316,371),(317,331),(317,374),(318,332),(318,374),(319,333),(319,374),(320,334),(320,374),(321,335),(321,374),(322,336),(322,374),(323,338),(323,350),(323,362),(323,367),(324,339),(324,351),(324,363),(324,367),(325,340),(325,352),(325,364),(325,367),(326,341),(326,353),(326,365),(326,367),(327,342),(327,347),(327,362),(327,366),(328,343),(328,346),(328,363),(328,366),(329,344),(329,348),(329,364),(329,366),(330,345),(330,349),(330,365),(330,366),(331,375),(332,375),(333,375),(334,375),(335,375),(336,375),(337,372),(337,373),(338,358),(338,368),(338,372),(339,359),(339,369),(339,372),(340,360),(340,370),(340,372),(341,361),(341,371),(341,372),(342,355),(342,368),(342,373),(343,354),(343,369),(343,373),(344,356),(344,370),(344,373),(345,357),(345,371),(345,373),(346,354),(346,374),(347,355),(347,374),(348,356),(348,374),(349,357),(349,374),(350,358),(350,374),(351,359),(351,374),(352,360),(352,374),(353,361),(353,374),(354,375),(355,375),(356,375),(357,375),(358,375),(359,375),(360,375),(361,375),(362,368),(362,374),(363,369),(363,374),(364,370),(364,374),(365,371),(365,374),(366,373),(366,374),(367,372),(367,374),(368,375),(369,375),(370,375),(371,375),(372,375),(373,375),(374,375)],376)
=> ? = 24
[1,6] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 6
[2,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,3] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,15),(1,21),(1,27),(1,33),(1,39),(1,47),(1,51),(1,56),(1,57),(1,144),(2,14),(2,20),(2,26),(2,32),(2,38),(2,46),(2,50),(2,54),(2,55),(2,144),(3,17),(3,23),(3,29),(3,35),(3,41),(3,49),(3,53),(3,55),(3,57),(3,143),(4,16),(4,22),(4,28),(4,34),(4,40),(4,48),(4,52),(4,54),(4,56),(4,143),(5,19),(5,25),(5,31),(5,37),(5,43),(5,50),(5,51),(5,52),(5,53),(5,142),(6,18),(6,24),(6,30),(6,36),(6,42),(6,46),(6,47),(6,48),(6,49),(6,142),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(7,58),(7,59),(8,26),(8,27),(8,28),(8,29),(8,30),(8,31),(8,45),(8,59),(8,61),(9,20),(9,21),(9,22),(9,23),(9,24),(9,25),(9,45),(9,58),(9,60),(10,32),(10,33),(10,34),(10,35),(10,36),(10,37),(10,44),(10,58),(10,61),(11,38),(11,39),(11,40),(11,41),(11,42),(11,43),(11,44),(11,59),(11,60),(12,13),(12,60),(12,61),(12,142),(12,143),(12,144),(13,169),(13,170),(13,171),(13,289),(14,62),(14,66),(14,70),(14,71),(14,169),(14,212),(14,218),(15,63),(15,67),(15,72),(15,73),(15,169),(15,213),(15,219),(16,64),(16,68),(16,70),(16,72),(16,170),(16,214),(16,220),(17,65),(17,69),(17,71),(17,73),(17,170),(17,215),(17,221),(18,62),(18,63),(18,64),(18,65),(18,171),(18,216),(18,222),(19,66),(19,67),(19,68),(19,69),(19,171),(19,217),(19,223),(20,82),(20,86),(20,90),(20,91),(20,130),(20,212),(20,283),(21,83),(21,87),(21,92),(21,93),(21,131),(21,213),(21,283),(22,84),(22,88),(22,90),(22,92),(22,132),(22,214),(22,284),(23,85),(23,89),(23,91),(23,93),(23,133),(23,215),(23,284),(24,82),(24,83),(24,84),(24,85),(24,134),(24,216),(24,285),(25,86),(25,87),(25,88),(25,89),(25,135),(25,217),(25,285),(26,94),(26,98),(26,102),(26,103),(26,130),(26,218),(26,286),(27,95),(27,99),(27,104),(27,105),(27,131),(27,219),(27,286),(28,96),(28,100),(28,102),(28,104),(28,132),(28,220),(28,287),(29,97),(29,101),(29,103),(29,105),(29,133),(29,221),(29,287),(30,94),(30,95),(30,96),(30,97),(30,134),(30,222),(30,288),(31,98),(31,99),(31,100),(31,101),(31,135),(31,223),(31,288),(32,106),(32,110),(32,114),(32,115),(32,136),(32,212),(32,286),(33,107),(33,111),(33,116),(33,117),(33,137),(33,213),(33,286),(34,108),(34,112),(34,114),(34,116),(34,138),(34,214),(34,287),(35,109),(35,113),(35,115),(35,117),(35,139),(35,215),(35,287),(36,106),(36,107),(36,108),(36,109),(36,140),(36,216),(36,288),(37,110),(37,111),(37,112),(37,113),(37,141),(37,217),(37,288),(38,118),(38,122),(38,126),(38,127),(38,136),(38,218),(38,283),(39,119),(39,123),(39,128),(39,129),(39,137),(39,219),(39,283),(40,120),(40,124),(40,126),(40,128),(40,138),(40,220),(40,284),(41,121),(41,125),(41,127),(41,129),(41,139),(41,221),(41,284),(42,118),(42,119),(42,120),(42,121),(42,140),(42,222),(42,285),(43,122),(43,123),(43,124),(43,125),(43,141),(43,223),(43,285),(44,136),(44,137),(44,138),(44,139),(44,140),(44,141),(44,289),(45,130),(45,131),(45,132),(45,133),(45,134),(45,135),(45,289),(46,62),(46,74),(46,75),(46,82),(46,94),(46,106),(46,118),(46,265),(47,63),(47,76),(47,77),(47,83),(47,95),(47,107),(47,119),(47,265),(48,64),(48,74),(48,76),(48,84),(48,96),(48,108),(48,120),(48,266),(49,65),(49,75),(49,77),(49,85),(49,97),(49,109),(49,121),(49,266),(50,66),(50,78),(50,79),(50,86),(50,98),(50,110),(50,122),(50,265),(51,67),(51,80),(51,81),(51,87),(51,99),(51,111),(51,123),(51,265),(52,68),(52,78),(52,80),(52,88),(52,100),(52,112),(52,124),(52,266),(53,69),(53,79),(53,81),(53,89),(53,101),(53,113),(53,125),(53,266),(54,70),(54,74),(54,78),(54,90),(54,102),(54,114),(54,126),(54,264),(55,71),(55,75),(55,79),(55,91),(55,103),(55,115),(55,127),(55,264),(56,72),(56,76),(56,80),(56,92),(56,104),(56,116),(56,128),(56,264),(57,73),(57,77),(57,81),(57,93),(57,105),(57,117),(57,129),(57,264),(58,212),(58,213),(58,214),(58,215),(58,216),(58,217),(58,289),(59,218),(59,219),(59,220),(59,221),(59,222),(59,223),(59,289),(60,283),(60,284),(60,285),(60,289),(61,286),(61,287),(61,288),(61,289),(62,204),(62,205),(62,224),(62,236),(62,291),(63,206),(63,207),(63,225),(63,237),(63,291),(64,204),(64,206),(64,226),(64,238),(64,292),(65,205),(65,207),(65,227),(65,239),(65,292),(66,208),(66,209),(66,228),(66,240),(66,291),(67,210),(67,211),(67,229),(67,241),(67,291),(68,208),(68,210),(68,230),(68,242),(68,292),(69,209),(69,211),(69,231),(69,243),(69,292),(70,204),(70,208),(70,232),(70,244),(70,290),(71,205),(71,209),(71,233),(71,245),(71,290),(72,206),(72,210),(72,234),(72,246),(72,290),(73,207),(73,211),(73,235),(73,247),(73,290),(74,172),(74,180),(74,188),(74,196),(74,204),(74,299),(75,173),(75,181),(75,189),(75,197),(75,205),(75,299),(76,174),(76,182),(76,190),(76,198),(76,206),(76,299),(77,175),(77,183),(77,191),(77,199),(77,207),(77,299),(78,176),(78,184),(78,192),(78,200),(78,208),(78,299),(79,177),(79,185),(79,193),(79,201),(79,209),(79,299),(80,178),(80,186),(80,194),(80,202),(80,210),(80,299),(81,179),(81,187),(81,195),(81,203),(81,211),(81,299),(82,145),(82,172),(82,173),(82,224),(82,293),(83,146),(83,174),(83,175),(83,225),(83,293),(84,147),(84,172),(84,174),(84,226),(84,294),(85,148),(85,173),(85,175),(85,227),(85,294),(86,149),(86,176),(86,177),(86,228),(86,293),(87,150),(87,178),(87,179),(87,229),(87,293),(88,151),(88,176),(88,178),(88,230),(88,294),(89,152),(89,177),(89,179),(89,231),(89,294),(90,153),(90,172),(90,176),(90,232),(90,295),(91,154),(91,173),(91,177),(91,233),(91,295),(92,155),(92,174),(92,178),(92,234),(92,295),(93,156),(93,175),(93,179),(93,235),(93,295),(94,145),(94,180),(94,181),(94,236),(94,296),(95,146),(95,182),(95,183),(95,237),(95,296),(96,147),(96,180),(96,182),(96,238),(96,297),(97,148),(97,181),(97,183),(97,239),(97,297),(98,149),(98,184),(98,185),(98,240),(98,296),(99,150),(99,186),(99,187),(99,241),(99,296),(100,151),(100,184),(100,186),(100,242),(100,297),(101,152),(101,185),(101,187),(101,243),(101,297),(102,153),(102,180),(102,184),(102,244),(102,298),(103,154),(103,181),(103,185),(103,245),(103,298),(104,155),(104,182),(104,186),(104,246),(104,298),(105,156),(105,183),(105,187),(105,247),(105,298),(106,157),(106,188),(106,189),(106,224),(106,296),(107,158),(107,190),(107,191),(107,225),(107,296),(108,159),(108,188),(108,190),(108,226),(108,297),(109,160),(109,189),(109,191),(109,227),(109,297),(110,161),(110,192),(110,193),(110,228),(110,296),(111,162),(111,194),(111,195),(111,229),(111,296),(112,163),(112,192),(112,194),(112,230),(112,297),(113,164),(113,193),(113,195),(113,231),(113,297),(114,165),(114,188),(114,192),(114,232),(114,298),(115,166),(115,189),(115,193),(115,233),(115,298),(116,167),(116,190),(116,194),(116,234),(116,298),(117,168),(117,191),(117,195),(117,235),(117,298),(118,157),(118,196),(118,197),(118,236),(118,293),(119,158),(119,198),(119,199),(119,237),(119,293),(120,159),(120,196),(120,198),(120,238),(120,294),(121,160),(121,197),(121,199),(121,239),(121,294),(122,161),(122,200),(122,201),(122,240),(122,293),(123,162),(123,202),(123,203),(123,241),(123,293),(124,163),(124,200),(124,202),(124,242),(124,294),(125,164),(125,201),(125,203),(125,243),(125,294),(126,165),(126,196),(126,200),(126,244),(126,295),(127,166),(127,197),(127,201),(127,245),(127,295),(128,167),(128,198),(128,202),(128,246),(128,295),(129,168),(129,199),(129,203),(129,247),(129,295),(130,145),(130,149),(130,153),(130,154),(130,300),(131,146),(131,150),(131,155),(131,156),(131,300),(132,147),(132,151),(132,153),(132,155),(132,301),(133,148),(133,152),(133,154),(133,156),(133,301),(134,145),(134,146),(134,147),(134,148),(134,302),(135,149),(135,150),(135,151),(135,152),(135,302),(136,157),(136,161),(136,165),(136,166),(136,300),(137,158),(137,162),(137,167),(137,168),(137,300),(138,159),(138,163),(138,165),(138,167),(138,301),(139,160),(139,164),(139,166),(139,168),(139,301),(140,157),(140,158),(140,159),(140,160),(140,302),(141,161),(141,162),(141,163),(141,164),(141,302),(142,171),(142,265),(142,266),(142,285),(142,288),(143,170),(143,264),(143,266),(143,284),(143,287),(144,169),(144,264),(144,265),(144,283),(144,286),(145,248),(145,249),(145,306),(146,250),(146,251),(146,306),(147,248),(147,250),(147,307),(148,249),(148,251),(148,307),(149,252),(149,253),(149,306),(150,254),(150,255),(150,306),(151,252),(151,254),(151,307),(152,253),(152,255),(152,307),(153,248),(153,252),(153,308),(154,249),(154,253),(154,308),(155,250),(155,254),(155,308),(156,251),(156,255),(156,308),(157,256),(157,257),(157,306),(158,258),(158,259),(158,306),(159,256),(159,258),(159,307),(160,257),(160,259),(160,307),(161,260),(161,261),(161,306),(162,262),(162,263),(162,306),(163,260),(163,262),(163,307),(164,261),(164,263),(164,307),(165,256),(165,260),(165,308),(166,257),(166,261),(166,308),(167,258),(167,262),(167,308),(168,259),(168,263),(168,308),(169,290),(169,291),(169,300),(170,290),(170,292),(170,301),(171,291),(171,292),(171,302),(172,248),(172,267),(172,304),(173,249),(173,268),(173,304),(174,250),(174,269),(174,304),(175,251),(175,270),(175,304),(176,252),(176,271),(176,304),(177,253),(177,272),(177,304),(178,254),(178,273),(178,304),(179,255),(179,274),(179,304),(180,248),(180,275),(180,305),(181,249),(181,276),(181,305),(182,250),(182,277),(182,305),(183,251),(183,278),(183,305),(184,252),(184,279),(184,305),(185,253),(185,280),(185,305),(186,254),(186,281),(186,305),(187,255),(187,282),(187,305),(188,256),(188,267),(188,305),(189,257),(189,268),(189,305),(190,258),(190,269),(190,305),(191,259),(191,270),(191,305),(192,260),(192,271),(192,305),(193,261),(193,272),(193,305),(194,262),(194,273),(194,305),(195,263),(195,274),(195,305),(196,256),(196,275),(196,304),(197,257),(197,276),(197,304),(198,258),(198,277),(198,304),(199,259),(199,278),(199,304),(200,260),(200,279),(200,304),(201,261),(201,280),(201,304),(202,262),(202,281),(202,304),(203,263),(203,282),(203,304),(204,267),(204,275),(204,303),(205,268),(205,276),(205,303),(206,269),(206,277),(206,303),(207,270),(207,278),(207,303),(208,271),(208,279),(208,303),(209,272),(209,280),(209,303),(210,273),(210,281),(210,303),(211,274),(211,282),(211,303),(212,224),(212,228),(212,232),(212,233),(212,300),(213,225),(213,229),(213,234),(213,235),(213,300),(214,226),(214,230),(214,232),(214,234),(214,301),(215,227),(215,231),(215,233),(215,235),(215,301),(216,224),(216,225),(216,226),(216,227),(216,302),(217,228),(217,229),(217,230),(217,231),(217,302),(218,236),(218,240),(218,244),(218,245),(218,300),(219,237),(219,241),(219,246),(219,247),(219,300),(220,238),(220,242),(220,244),(220,246),(220,301),(221,239),(221,243),(221,245),(221,247),(221,301),(222,236),(222,237),(222,238),(222,239),(222,302),(223,240),(223,241),(223,242),(223,243),(223,302),(224,267),(224,268),(224,306),(225,269),(225,270),(225,306),(226,267),(226,269),(226,307),(227,268),(227,270),(227,307),(228,271),(228,272),(228,306),(229,273),(229,274),(229,306),(230,271),(230,273),(230,307),(231,272),(231,274),(231,307),(232,267),(232,271),(232,308),(233,268),(233,272),(233,308),(234,269),(234,273),(234,308),(235,270),(235,274),(235,308),(236,275),(236,276),(236,306),(237,277),(237,278),(237,306),(238,275),(238,277),(238,307),(239,276),(239,278),(239,307),(240,279),(240,280),(240,306),(241,281),(241,282),(241,306),(242,279),(242,281),(242,307),(243,280),(243,282),(243,307),(244,275),(244,279),(244,308),(245,276),(245,280),(245,308),(246,277),(246,281),(246,308),(247,278),(247,282),(247,308),(248,309),(249,309),(250,309),(251,309),(252,309),(253,309),(254,309),(255,309),(256,309),(257,309),(258,309),(259,309),(260,309),(261,309),(262,309),(263,309),(264,290),(264,295),(264,298),(264,299),(265,291),(265,293),(265,296),(265,299),(266,292),(266,294),(266,297),(266,299),(267,309),(268,309),(269,309),(270,309),(271,309),(272,309),(273,309),(274,309),(275,309),(276,309),(277,309),(278,309),(279,309),(280,309),(281,309),(282,309),(283,293),(283,295),(283,300),(284,294),(284,295),(284,301),(285,293),(285,294),(285,302),(286,296),(286,298),(286,300),(287,297),(287,298),(287,301),(288,296),(288,297),(288,302),(289,300),(289,301),(289,302),(290,303),(290,308),(291,303),(291,306),(292,303),(292,307),(293,304),(293,306),(294,304),(294,307),(295,304),(295,308),(296,305),(296,306),(297,305),(297,307),(298,305),(298,308),(299,303),(299,304),(299,305),(300,306),(300,308),(301,307),(301,308),(302,306),(302,307),(303,309),(304,309),(305,309),(306,309),(307,309),(308,309)],310)
=> ? = 15
[2,1,4] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(1,28),(1,34),(1,42),(1,43),(1,48),(1,49),(1,64),(1,67),(1,84),(1,85),(1,88),(1,118),(1,119),(2,27),(2,33),(2,39),(2,41),(2,45),(2,47),(2,63),(2,66),(2,81),(2,83),(2,87),(2,117),(2,119),(3,26),(3,32),(3,38),(3,40),(3,44),(3,46),(3,62),(3,65),(3,80),(3,82),(3,86),(3,117),(3,118),(4,31),(4,35),(4,54),(4,55),(4,60),(4,61),(4,68),(4,71),(4,82),(4,83),(4,88),(4,120),(4,121),(5,30),(5,36),(5,51),(5,53),(5,57),(5,59),(5,69),(5,72),(5,80),(5,84),(5,87),(5,120),(5,122),(6,29),(6,37),(6,50),(6,52),(6,56),(6,58),(6,70),(6,73),(6,81),(6,85),(6,86),(6,121),(6,122),(7,23),(7,24),(7,25),(7,32),(7,33),(7,34),(7,35),(7,36),(7,37),(7,222),(7,223),(7,224),(8,19),(8,40),(8,41),(8,50),(8,51),(8,64),(8,68),(8,74),(8,75),(8,216),(8,217),(8,224),(9,18),(9,38),(9,42),(9,52),(9,54),(9,63),(9,69),(9,76),(9,78),(9,216),(9,218),(9,223),(10,17),(10,39),(10,43),(10,53),(10,55),(10,62),(10,70),(10,77),(10,79),(10,217),(10,218),(10,222),(11,22),(11,46),(11,47),(11,56),(11,57),(11,67),(11,71),(11,78),(11,79),(11,219),(11,220),(11,224),(12,21),(12,44),(12,48),(12,58),(12,60),(12,66),(12,72),(12,75),(12,77),(12,219),(12,221),(12,223),(13,20),(13,45),(13,49),(13,59),(13,61),(13,65),(13,73),(13,74),(13,76),(13,220),(13,221),(13,222),(14,17),(14,20),(14,23),(14,26),(14,29),(14,104),(14,119),(14,120),(14,216),(14,219),(15,18),(15,21),(15,24),(15,27),(15,30),(15,104),(15,118),(15,121),(15,217),(15,220),(16,19),(16,22),(16,25),(16,28),(16,31),(16,104),(16,117),(16,122),(16,218),(16,221),(17,105),(17,111),(17,232),(17,310),(17,342),(17,346),(17,454),(18,106),(18,112),(18,233),(18,311),(18,341),(18,347),(18,454),(19,107),(19,113),(19,234),(19,312),(19,340),(19,348),(19,454),(20,108),(20,114),(20,232),(20,313),(20,345),(20,349),(20,453),(21,109),(21,115),(21,233),(21,314),(21,344),(21,350),(21,453),(22,110),(22,116),(22,234),(22,315),(22,343),(22,351),(22,453),(23,98),(23,101),(23,225),(23,232),(23,240),(23,241),(23,455),(24,99),(24,102),(24,225),(24,233),(24,239),(24,242),(24,456),(25,100),(25,103),(25,225),(25,234),(25,238),(25,243),(25,457),(26,98),(26,105),(26,108),(26,123),(26,304),(26,328),(26,331),(26,452),(27,99),(27,106),(27,109),(27,124),(27,305),(27,329),(27,332),(27,452),(28,100),(28,107),(28,110),(28,125),(28,306),(28,330),(28,333),(28,452),(29,101),(29,111),(29,114),(29,123),(29,309),(29,334),(29,337),(29,451),(30,102),(30,112),(30,115),(30,124),(30,308),(30,335),(30,338),(30,451),(31,103),(31,113),(31,116),(31,125),(31,307),(31,336),(31,339),(31,451),(32,89),(32,91),(32,95),(32,98),(32,238),(32,239),(32,298),(32,316),(32,318),(33,90),(33,92),(33,96),(33,99),(33,238),(33,240),(33,299),(33,317),(33,319),(34,93),(34,94),(34,97),(34,100),(34,239),(34,240),(34,300),(34,320),(34,321),(35,91),(35,92),(35,97),(35,103),(35,241),(35,242),(35,301),(35,322),(35,323),(36,89),(36,93),(36,96),(36,102),(36,241),(36,243),(36,302),(36,324),(36,326),(37,90),(37,94),(37,95),(37,101),(37,242),(37,243),(37,303),(37,325),(37,327),(38,144),(38,164),(38,182),(38,192),(38,204),(38,316),(38,328),(38,341),(38,439),(39,145),(39,165),(39,183),(39,193),(39,205),(39,317),(39,329),(39,342),(39,439),(40,146),(40,162),(40,180),(40,194),(40,206),(40,318),(40,328),(40,340),(40,440),(41,147),(41,163),(41,181),(41,195),(41,207),(41,319),(41,329),(41,340),(41,441),(42,148),(42,167),(42,184),(42,196),(42,208),(42,320),(42,330),(42,341),(42,441),(43,149),(43,166),(43,185),(43,197),(43,209),(43,321),(43,330),(43,342),(43,440),(44,150),(44,158),(44,188),(44,198),(44,206),(44,316),(44,331),(44,344),(44,442),(45,151),(45,159),(45,189),(45,199),(45,207),(45,317),(45,332),(45,345),(45,442),(46,152),(46,156),(46,186),(46,200),(46,204),(46,318),(46,331),(46,343),(46,443),(47,153),(47,157),(47,187),(47,201),(47,205),(47,319),(47,332),(47,343),(47,444),(48,154),(48,161),(48,190),(48,202),(48,209),(48,320),(48,333),(48,344),(48,444),(49,155),(49,160),(49,191),(49,203),(49,208),(49,321),(49,333),(49,345),(49,443),(50,136),(50,174),(50,180),(50,195),(50,211),(50,325),(50,334),(50,348),(50,446),(51,137),(51,175),(51,181),(51,194),(51,210),(51,324),(51,335),(51,348),(51,445),(52,135),(52,176),(52,182),(52,196),(52,214),(52,327),(52,334),(52,347),(52,447),(53,134),(53,177),(53,183),(53,197),(53,215),(53,326),(53,335),(53,346),(53,447),(54,133),(54,178),(54,184),(54,192),(54,212),(54,322),(54,336),(54,347),(54,445),(55,132),(55,179),(55,185),(55,193),(55,213),(55,323),(55,336),(55,346),(55,446),(56,142),(56,171),(56,186),(56,201),(56,214),(56,325),(56,337),(56,351),(56,449),(57,143),(57,170),(57,187),(57,200),(57,215),(57,324),(57,338),(57,351),(57,448),(58,141),(58,173),(58,188),(58,202),(58,211),(58,327),(58,337),(58,350),(58,450),(59,140),(59,172),(59,189),(59,203),(59,210),(59,326),(59,338),(59,349),(59,450),(60,139),(60,168),(60,190),(60,198),(60,213),(60,322),(60,339),(60,350),(60,448),(61,138),(61,169),(61,191),(61,199),(61,212),(61,323),(61,339),(61,349),(61,449),(62,105),(62,126),(62,132),(62,134),(62,156),(62,158),(62,298),(62,439),(62,440),(63,106),(63,127),(63,133),(63,135),(63,157),(63,159),(63,299),(63,439),(63,441),(64,107),(64,128),(64,136),(64,137),(64,160),(64,161),(64,300),(64,440),(64,441),(65,108),(65,129),(65,138),(65,140),(65,162),(65,164),(65,298),(65,442),(65,443),(66,109),(66,130),(66,139),(66,141),(66,163),(66,165),(66,299),(66,442),(66,444),(67,110),(67,131),(67,142),(67,143),(67,166),(67,167),(67,300),(67,443),(67,444),(68,113),(68,128),(68,146),(68,147),(68,168),(68,169),(68,301),(68,445),(68,446),(69,112),(69,127),(69,144),(69,148),(69,170),(69,172),(69,302),(69,445),(69,447),(70,111),(70,126),(70,145),(70,149),(70,171),(70,173),(70,303),(70,446),(70,447),(71,116),(71,131),(71,152),(71,153),(71,178),(71,179),(71,301),(71,448),(71,449),(72,115),(72,130),(72,150),(72,154),(72,175),(72,177),(72,302),(72,448),(72,450),(73,114),(73,129),(73,151),(73,155),(73,174),(73,176),(73,303),(73,449),(73,450),(74,160),(74,162),(74,169),(74,174),(74,207),(74,210),(74,312),(74,313),(74,456),(75,161),(75,163),(75,168),(75,175),(75,206),(75,211),(75,312),(75,314),(75,455),(76,159),(76,164),(76,172),(76,176),(76,208),(76,212),(76,311),(76,313),(76,457),(77,158),(77,165),(77,173),(77,177),(77,209),(77,213),(77,310),(77,314),(77,457),(78,157),(78,167),(78,170),(78,178),(78,204),(78,214),(78,311),(78,315),(78,455),(79,156),(79,166),(79,171),(79,179),(79,205),(79,215),(79,310),(79,315),(79,456),(80,89),(80,134),(80,140),(80,144),(80,150),(80,194),(80,200),(80,304),(80,308),(80,421),(81,90),(81,135),(81,141),(81,145),(81,151),(81,195),(81,201),(81,305),(81,309),(81,421),(82,91),(82,132),(82,138),(82,146),(82,152),(82,192),(82,198),(82,304),(82,307),(82,422),(83,92),(83,133),(83,139),(83,147),(83,153),(83,193),(83,199),(83,305),(83,307),(83,423),(84,93),(84,137),(84,143),(84,148),(84,154),(84,197),(84,203),(84,306),(84,308),(84,423),(85,94),(85,136),(85,142),(85,149),(85,155),(85,196),(85,202),(85,306),(85,309),(85,422),(86,95),(86,123),(86,126),(86,129),(86,180),(86,182),(86,186),(86,188),(86,421),(86,422),(87,96),(87,124),(87,127),(87,130),(87,181),(87,183),(87,187),(87,189),(87,421),(87,423),(88,97),(88,125),(88,128),(88,131),(88,184),(88,185),(88,190),(88,191),(88,422),(88,423),(89,360),(89,370),(89,378),(89,415),(89,419),(89,494),(90,361),(90,371),(90,379),(90,416),(90,420),(90,494),(91,358),(91,372),(91,376),(91,415),(91,418),(91,495),(92,359),(92,373),(92,377),(92,416),(92,418),(92,496),(93,362),(93,374),(93,380),(93,417),(93,419),(93,496),(94,363),(94,375),(94,381),(94,417),(94,420),(94,495),(95,235),(95,352),(95,354),(95,412),(95,494),(95,495),(96,236),(96,353),(96,355),(96,413),(96,494),(96,496),(97,237),(97,356),(97,357),(97,414),(97,495),(97,496),(98,235),(98,406),(98,415),(98,497),(98,503),(99,236),(99,407),(99,416),(99,498),(99,503),(100,237),(100,408),(100,417),(100,499),(100,503),(101,235),(101,409),(101,420),(101,500),(101,504),(102,236),(102,410),(102,419),(102,501),(102,504),(103,237),(103,411),(103,418),(103,502),(103,504),(104,225),(104,451),(104,452),(104,453),(104,454),(105,280),(105,382),(105,394),(105,406),(105,547),(106,281),(106,383),(106,395),(106,407),(106,547),(107,282),(107,384),(107,396),(107,408),(107,547),(108,283),(108,385),(108,397),(108,406),(108,548),(109,284),(109,386),(109,398),(109,407),(109,548),(110,285),(110,387),(110,399),(110,408),(110,548),(111,280),(111,390),(111,400),(111,409),(111,549),(112,281),(112,389),(112,401),(112,410),(112,549),(113,282),(113,388),(113,402),(113,411),(113,549),(114,283),(114,393),(114,403),(114,409),(114,550),(115,284),(115,392),(115,404),(115,410),(115,550),(116,285),(116,391),(116,405),(116,411),(116,550),(117,238),(117,307),(117,340),(117,343),(117,421),(117,439),(117,442),(117,452),(118,239),(118,308),(118,341),(118,344),(118,422),(118,440),(118,443),(118,452),(119,240),(119,309),(119,342),(119,345),(119,423),(119,441),(119,444),(119,452),(120,241),(120,304),(120,346),(120,349),(120,423),(120,445),(120,448),(120,451),(121,242),(121,305),(121,347),(121,350),(121,422),(121,446),(121,449),(121,451),(122,243),(122,306),(122,348),(122,351),(122,421),(122,447),(122,450),(122,451),(123,235),(123,280),(123,283),(123,364),(123,367),(123,551),(124,236),(124,281),(124,284),(124,365),(124,368),(124,551),(125,237),(125,282),(125,285),(125,366),(125,369),(125,551),(126,280),(126,286),(126,288),(126,412),(126,523),(126,524),(127,281),(127,287),(127,289),(127,413),(127,523),(127,525),(128,282),(128,290),(128,291),(128,414),(128,524),(128,525),(129,283),(129,292),(129,294),(129,412),(129,526),(129,527),(130,284),(130,293),(130,295),(130,413),(130,526),(130,528),(131,285),(131,296),(131,297),(131,414),(131,527),(131,528),(132,246),(132,268),(132,372),(132,382),(132,488),(132,524),(133,247),(133,269),(133,373),(133,383),(133,488),(133,525),(134,244),(134,270),(134,370),(134,382),(134,489),(134,523),(135,245),(135,271),(135,371),(135,383),(135,490),(135,523),(136,249),(136,272),(136,375),(136,384),(136,490),(136,524),(137,248),(137,273),(137,374),(137,384),(137,489),(137,525),(138,252),(138,274),(138,372),(138,385),(138,491),(138,527),(139,253),(139,275),(139,373),(139,386),(139,491),(139,528),(140,250),(140,276),(140,370),(140,385),(140,492),(140,526),(141,251),(141,277),(141,371),(141,386),(141,493),(141,526),(142,255),(142,278),(142,375),(142,387),(142,493),(142,527),(143,254),(143,279),(143,374),(143,387),(143,492),(143,528),(144,256),(144,276),(144,378),(144,389),(144,482),(144,523),(145,257),(145,277),(145,379),(145,390),(145,483),(145,523),(146,258),(146,274),(146,376),(146,388),(146,482),(146,524),(147,259),(147,275),(147,377),(147,388),(147,483),(147,525),(148,260),(148,279),(148,380),(148,389),(148,484),(148,525),(149,261),(149,278),(149,381),(149,390),(149,484),(149,524),(150,264),(150,270),(150,378),(150,392),(150,485),(150,526),(151,265),(151,271),(151,379),(151,393),(151,486),(151,526),(152,262),(152,268),(152,376),(152,391),(152,485),(152,527),(153,263),(153,269),(153,377),(153,391),(153,486),(153,528),(154,267),(154,273),(154,380),(154,392),(154,487),(154,528),(155,266),(155,272),(155,381),(155,393),(155,487),(155,527),(156,244),(156,268),(156,286),(156,394),(156,473),(156,529),(157,245),(157,269),(157,287),(157,395),(157,473),(157,530),(158,246),(158,270),(158,288),(158,394),(158,474),(158,531),(159,247),(159,271),(159,289),(159,395),(159,475),(159,531),(160,248),(160,272),(160,290),(160,396),(160,475),(160,529),(161,249),(161,273),(161,291),(161,396),(161,474),(161,530),(162,250),(162,274),(162,292),(162,397),(162,470),(162,529),(163,251),(163,275),(163,293),(163,398),(163,470),(163,530),(164,252),(164,276),(164,294),(164,397),(164,471),(164,531),(165,253),(165,277),(165,295),(165,398),(165,472),(165,531),(166,254),(166,278),(166,296),(166,399),(166,472),(166,529),(167,255),(167,279),(167,297),(167,399),(167,471),(167,530),(168,258),(168,275),(168,291),(168,402),(168,480),(168,532),(169,259),(169,274),(169,290),(169,402),(169,479),(169,533),(170,256),(170,279),(170,287),(170,401),(170,481),(170,532),(171,257),(171,278),(171,286),(171,400),(171,481),(171,533),(172,260),(172,276),(172,289),(172,401),(172,479),(172,534),(173,261),(173,277),(173,288),(173,400),(173,480),(173,534),(174,265),(174,272),(174,292),(174,403),(174,478),(174,533),(175,264),(175,273),(175,293),(175,404),(175,478),(175,532),(176,266),(176,271),(176,294),(176,403),(176,477),(176,534),(177,267),(177,270),(177,295),(177,404),(177,476),(177,534),(178,262),(178,269),(178,297),(178,405),(178,477),(178,532),(179,263),(179,268),(179,296),(179,405),(179,476),(179,533),(180,226),(180,292),(180,354),(180,364),(180,458),(180,524),(181,227),(181,293),(181,355),(181,365),(181,458),(181,525),(182,228),(182,294),(182,352),(182,364),(182,459),(182,523),(183,229),(183,295),(183,353),(183,365),(183,460),(183,523),(184,230),(184,297),(184,356),(184,366),(184,459),(184,525),(185,231),(185,296),(185,357),(185,366),(185,460),(185,524),(186,228),(186,286),(186,354),(186,367),(186,461),(186,527),(187,229),(187,287),(187,355),(187,368),(187,461),(187,528),(188,226),(188,288),(188,352),(188,367),(188,462),(188,526),(189,227),(189,289),(189,353),(189,368),(189,463),(189,526),(190,231),(190,291),(190,356),(190,369),(190,462),(190,528),(191,230),(191,290),(191,357),(191,369),(191,463),(191,527),(192,252),(192,262),(192,358),(192,459),(192,482),(192,488),(193,253),(193,263),(193,359),(193,460),(193,483),(193,488),(194,250),(194,264),(194,360),(194,458),(194,482),(194,489),(195,251),(195,265),(195,361),(195,458),(195,483),(195,490),(196,255),(196,266),(196,363),(196,459),(196,484),(196,490),(197,254),(197,267),(197,362),(197,460),(197,484),(197,489),(198,246),(198,258),(198,358),(198,462),(198,485),(198,491),(199,247),(199,259),(199,359),(199,463),(199,486),(199,491),(200,244),(200,256),(200,360),(200,461),(200,485),(200,492),(201,245),(201,257),(201,361),(201,461),(201,486),(201,493),(202,249),(202,261),(202,363),(202,462),(202,487),(202,493),(203,248),(203,260),(203,362),(203,463),(203,487),(203,492),(204,228),(204,256),(204,262),(204,471),(204,473),(204,497),(205,229),(205,257),(205,263),(205,472),(205,473),(205,498),(206,226),(206,258),(206,264),(206,470),(206,474),(206,497),(207,227),(207,259),(207,265),(207,470),(207,475),(207,498),(208,230),(208,260),(208,266),(208,471),(208,475),(208,499),(209,231),(209,261),(209,267),(209,472),(209,474),(209,499),(210,227),(210,248),(210,250),(210,478),(210,479),(210,501),(211,226),(211,249),(211,251),(211,478),(211,480),(211,500),(212,230),(212,247),(212,252),(212,477),(212,479),(212,502),(213,231),(213,246),(213,253),(213,476),(213,480),(213,502),(214,228),(214,245),(214,255),(214,477),(214,481),(214,500),(215,229),(215,244),(215,254),(215,476),(215,481),(215,501),(216,313),(216,328),(216,334),(216,441),(216,445),(216,454),(216,455),(217,314),(217,329),(217,335),(217,440),(217,446),(217,454),(217,456),(218,315),(218,330),(218,336),(218,439),(218,447),(218,454),(218,457),(219,310),(219,331),(219,337),(219,444),(219,448),(219,453),(219,455),(220,311),(220,332),(220,338),(220,443),(220,449),(220,453),(220,456),(221,312),(221,333),(221,339),(221,442),(221,450),(221,453),(221,457),(222,232),(222,298),(222,303),(222,317),(222,321),(222,323),(222,326),(222,456),(222,457),(223,233),(223,299),(223,302),(223,316),(223,320),(223,322),(223,327),(223,455),(223,457),(224,234),(224,300),(224,301),(224,318),(224,319),(224,324),(224,325),(224,455),(224,456),(225,503),(225,504),(225,553),(226,520),(226,535),(226,539),(227,521),(227,535),(227,540),(228,520),(228,536),(228,538),(229,521),(229,537),(229,538),(230,522),(230,536),(230,540),(231,522),(231,537),(231,539),(232,406),(232,409),(232,425),(232,427),(232,553),(233,407),(233,410),(233,424),(233,428),(233,553),(234,408),(234,411),(234,426),(234,429),(234,553),(235,430),(235,520),(235,552),(236,431),(236,521),(236,552),(237,432),(237,522),(237,552),(238,418),(238,426),(238,494),(238,503),(238,531),(239,419),(239,424),(239,495),(239,503),(239,529),(240,420),(240,425),(240,496),(240,503),(240,530),(241,415),(241,427),(241,496),(241,504),(241,532),(242,416),(242,428),(242,495),(242,504),(242,533),(243,417),(243,429),(243,494),(243,504),(243,534),(244,505),(244,538),(244,545),(245,506),(245,538),(245,546),(246,505),(246,539),(246,544),(247,506),(247,540),(247,544),(248,507),(248,540),(248,545),(249,507),(249,539),(249,546),(250,508),(250,535),(250,545),(251,509),(251,535),(251,546),(252,508),(252,536),(252,544),(253,509),(253,537),(253,544),(254,510),(254,537),(254,545),(255,510),(255,536),(255,546),(256,512),(256,538),(256,541),(257,513),(257,538),(257,542),(258,511),(258,539),(258,541),(259,511),(259,540),(259,542),(260,512),(260,540),(260,543),(261,513),(261,539),(261,543),(262,514),(262,536),(262,541),(263,514),(263,537),(263,542),(264,515),(264,535),(264,541),(265,516),(265,535),(265,542),(266,516),(266,536),(266,543),(267,515),(267,537),(267,543),(268,505),(268,514),(268,555),(269,506),(269,514),(269,556),(270,505),(270,515),(270,554),(271,506),(271,516),(271,554),(272,507),(272,516),(272,555),(273,507),(273,515),(273,556),(274,508),(274,511),(274,555),(275,509),(275,511),(275,556),(276,508),(276,512),(276,554),(277,509),(277,513),(277,554),(278,510),(278,513),(278,555),(279,510),(279,512),(279,556),(280,430),(280,433),(280,557),(281,431),(281,434),(281,557),(282,432),(282,435),(282,557),(283,430),(283,436),(283,558),(284,431),(284,437),(284,558),(285,432),(285,438),(285,558),(286,433),(286,538),(286,555),(287,434),(287,538),(287,556),(288,433),(288,539),(288,554),(289,434),(289,540),(289,554),(290,435),(290,540),(290,555),(291,435),(291,539),(291,556),(292,436),(292,535),(292,555),(293,437),(293,535),(293,556),(294,436),(294,536),(294,554),(295,437),(295,537),(295,554),(296,438),(296,537),(296,555),(297,438),(297,536),(297,556),(298,370),(298,372),(298,406),(298,412),(298,529),(298,531),(299,371),(299,373),(299,407),(299,413),(299,530),(299,531),(300,374),(300,375),(300,408),(300,414),(300,529),(300,530),(301,376),(301,377),(301,411),(301,414),(301,532),(301,533),(302,378),(302,380),(302,410),(302,413),(302,532),(302,534),(303,379),(303,381),(303,409),(303,412),(303,533),(303,534),(304,382),(304,385),(304,415),(304,482),(304,485),(304,551),(305,383),(305,386),(305,416),(305,483),(305,486),(305,551),(306,384),(306,387),(306,417),(306,484),(306,487),(306,551),(307,388),(307,391),(307,418),(307,488),(307,491),(307,551),(308,389),(308,392),(308,419),(308,489),(308,492),(308,551),(309,390),(309,393),(309,420),(309,490),(309,493),(309,551),(310,394),(310,400),(310,472),(310,476),(310,553),(311,395),(311,401),(311,471),(311,477),(311,553),(312,396),(312,402),(312,470),(312,478),(312,553),(313,397),(313,403),(313,475),(313,479),(313,553),(314,398),(314,404),(314,474),(314,480),(314,553),(315,399),(315,405),(315,473),(315,481),(315,553),(316,352),(316,358),(316,378),(316,424),(316,497),(316,531),(317,353),(317,359),(317,379),(317,425),(317,498),(317,531),(318,354),(318,360),(318,376),(318,426),(318,497),(318,529),(319,355),(319,361),(319,377),(319,426),(319,498),(319,530),(320,356),(320,363),(320,380),(320,424),(320,499),(320,530),(321,357),(321,362),(321,381),(321,425),(321,499),(321,529),(322,356),(322,358),(322,373),(322,428),(322,502),(322,532),(323,357),(323,359),(323,372),(323,427),(323,502),(323,533),(324,355),(324,360),(324,374),(324,429),(324,501),(324,532),(325,354),(325,361),(325,375),(325,429),(325,500),(325,533),(326,353),(326,362),(326,370),(326,427),(326,501),(326,534),(327,352),(327,363),(327,371),(327,428),(327,500),(327,534),(328,364),(328,397),(328,482),(328,497),(328,547),(329,365),(329,398),(329,483),(329,498),(329,547),(330,366),(330,399),(330,484),(330,499),(330,547),(331,367),(331,394),(331,485),(331,497),(331,548),(332,368),(332,395),(332,486),(332,498),(332,548),(333,369),(333,396),(333,487),(333,499),(333,548),(334,364),(334,403),(334,490),(334,500),(334,549),(335,365),(335,404),(335,489),(335,501),(335,549),(336,366),(336,405),(336,488),(336,502),(336,549),(337,367),(337,400),(337,493),(337,500),(337,550),(338,368),(338,401),(338,492),(338,501),(338,550),(339,369),(339,402),(339,491),(339,502),(339,550),(340,388),(340,426),(340,458),(340,470),(340,547),(341,389),(341,424),(341,459),(341,471),(341,547),(342,390),(342,425),(342,460),(342,472),(342,547),(343,391),(343,426),(343,461),(343,473),(343,548),(344,392),(344,424),(344,462),(344,474),(344,548),(345,393),(345,425),(345,463),(345,475),(345,548),(346,382),(346,427),(346,460),(346,476),(346,549),(347,383),(347,428),(347,459),(347,477),(347,549),(348,384),(348,429),(348,458),(348,478),(348,549),(349,385),(349,427),(349,463),(349,479),(349,550),(350,386),(350,428),(350,462),(350,480),(350,550),(351,387),(351,429),(351,461),(351,481),(351,550),(352,518),(352,520),(352,554),(353,519),(353,521),(353,554),(354,517),(354,520),(354,555),(355,517),(355,521),(355,556),(356,518),(356,522),(356,556),(357,519),(357,522),(357,555),(358,518),(358,541),(358,544),(359,519),(359,542),(359,544),(360,517),(360,541),(360,545),(361,517),(361,542),(361,546),(362,519),(362,543),(362,545),(363,518),(363,543),(363,546),(364,436),(364,520),(364,557),(365,437),(365,521),(365,557),(366,438),(366,522),(366,557),(367,433),(367,520),(367,558),(368,434),(368,521),(368,558),(369,435),(369,522),(369,558),(370,464),(370,545),(370,554),(371,465),(371,546),(371,554),(372,464),(372,544),(372,555),(373,465),(373,544),(373,556),(374,466),(374,545),(374,556),(375,466),(375,546),(375,555),(376,467),(376,541),(376,555),(377,467),(377,542),(377,556),(378,468),(378,541),(378,554),(379,469),(379,542),(379,554),(380,468),(380,543),(380,556),(381,469),(381,543),(381,555),(382,464),(382,505),(382,557),(383,465),(383,506),(383,557),(384,466),(384,507),(384,557),(385,464),(385,508),(385,558),(386,465),(386,509),(386,558),(387,466),(387,510),(387,558),(388,467),(388,511),(388,557),(389,468),(389,512),(389,557),(390,469),(390,513),(390,557),(391,467),(391,514),(391,558),(392,468),(392,515),(392,558),(393,469),(393,516),(393,558),(394,433),(394,505),(394,559),(395,434),(395,506),(395,559),(396,435),(396,507),(396,559),(397,436),(397,508),(397,559),(398,437),(398,509),(398,559),(399,438),(399,510),(399,559),(400,433),(400,513),(400,560),(401,434),(401,512),(401,560),(402,435),(402,511),(402,560),(403,436),(403,516),(403,560),(404,437),(404,515),(404,560),(405,438),(405,514),(405,560),(406,430),(406,464),(406,559),(407,431),(407,465),(407,559),(408,432),(408,466),(408,559),(409,430),(409,469),(409,560),(410,431),(410,468),(410,560),(411,432),(411,467),(411,560),(412,430),(412,554),(412,555),(413,431),(413,554),(413,556),(414,432),(414,555),(414,556),(415,464),(415,541),(415,552),(416,465),(416,542),(416,552),(417,466),(417,543),(417,552),(418,467),(418,544),(418,552),(419,468),(419,545),(419,552),(420,469),(420,546),(420,552),(421,458),(421,461),(421,494),(421,523),(421,526),(421,551),(422,459),(422,462),(422,495),(422,524),(422,527),(422,551),(423,460),(423,463),(423,496),(423,525),(423,528),(423,551),(424,468),(424,518),(424,559),(425,469),(425,519),(425,559),(426,467),(426,517),(426,559),(427,464),(427,519),(427,560),(428,465),(428,518),(428,560),(429,466),(429,517),(429,560),(430,561),(431,561),(432,561),(433,561),(434,561),(435,561),(436,561),(437,561),(438,561),(439,473),(439,488),(439,523),(439,531),(439,547),(440,474),(440,489),(440,524),(440,529),(440,547),(441,475),(441,490),(441,525),(441,530),(441,547),(442,470),(442,491),(442,526),(442,531),(442,548),(443,471),(443,492),(443,527),(443,529),(443,548),(444,472),(444,493),(444,528),(444,530),(444,548),(445,479),(445,482),(445,525),(445,532),(445,549),(446,480),(446,483),(446,524),(446,533),(446,549),(447,481),(447,484),(447,523),(447,534),(447,549),(448,476),(448,485),(448,528),(448,532),(448,550),(449,477),(449,486),(449,527),(449,533),(449,550),(450,478),(450,487),(450,526),(450,534),(450,550),(451,504),(451,549),(451,550),(451,551),(452,503),(452,547),(452,548),(452,551),(453,548),(453,550),(453,553),(454,547),(454,549),(454,553),(455,497),(455,500),(455,530),(455,532),(455,553),(456,498),(456,501),(456,529),(456,533),(456,553),(457,499),(457,502),(457,531),(457,534),(457,553),(458,517),(458,535),(458,557),(459,518),(459,536),(459,557),(460,519),(460,537),(460,557),(461,517),(461,538),(461,558),(462,518),(462,539),(462,558),(463,519),(463,540),(463,558),(464,561),(465,561),(466,561),(467,561),(468,561),(469,561),(470,511),(470,535),(470,559),(471,512),(471,536),(471,559),(472,513),(472,537),(472,559),(473,514),(473,538),(473,559),(474,515),(474,539),(474,559),(475,516),(475,540),(475,559),(476,505),(476,537),(476,560),(477,506),(477,536),(477,560),(478,507),(478,535),(478,560),(479,508),(479,540),(479,560),(480,509),(480,539),(480,560),(481,510),(481,538),(481,560),(482,508),(482,541),(482,557),(483,509),(483,542),(483,557),(484,510),(484,543),(484,557),(485,505),(485,541),(485,558),(486,506),(486,542),(486,558),(487,507),(487,543),(487,558),(488,514),(488,544),(488,557),(489,515),(489,545),(489,557),(490,516),(490,546),(490,557),(491,511),(491,544),(491,558),(492,512),(492,545),(492,558),(493,513),(493,546),(493,558),(494,517),(494,552),(494,554),(495,518),(495,552),(495,555),(496,519),(496,552),(496,556),(497,520),(497,541),(497,559),(498,521),(498,542),(498,559),(499,522),(499,543),(499,559),(500,520),(500,546),(500,560),(501,521),(501,545),(501,560),(502,522),(502,544),(502,560),(503,552),(503,559),(504,552),(504,560),(505,561),(506,561),(507,561),(508,561),(509,561),(510,561),(511,561),(512,561),(513,561),(514,561),(515,561),(516,561),(517,561),(518,561),(519,561),(520,561),(521,561),(522,561),(523,538),(523,554),(523,557),(524,539),(524,555),(524,557),(525,540),(525,556),(525,557),(526,535),(526,554),(526,558),(527,536),(527,555),(527,558),(528,537),(528,556),(528,558),(529,545),(529,555),(529,559),(530,546),(530,556),(530,559),(531,544),(531,554),(531,559),(532,541),(532,556),(532,560),(533,542),(533,555),(533,560),(534,543),(534,554),(534,560),(535,561),(536,561),(537,561),(538,561),(539,561),(540,561),(541,561),(542,561),(543,561),(544,561),(545,561),(546,561),(547,557),(547,559),(548,558),(548,559),(549,557),(549,560),(550,558),(550,560),(551,552),(551,557),(551,558),(552,561),(553,559),(553,560),(554,561),(555,561),(556,561),(557,561),(558,561),(559,561),(560,561)],562)
=> ? = 20
[2,4,1] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 10
[2,5] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 15
[3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,1,2] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(1,32),(1,33),(2,16),(2,17),(2,18),(2,19),(2,20),(2,21),(2,31),(2,33),(3,10),(3,11),(3,12),(3,13),(3,14),(3,15),(3,31),(3,32),(4,11),(4,17),(4,23),(4,30),(4,63),(4,65),(5,10),(5,16),(5,22),(5,30),(5,62),(5,64),(6,12),(6,18),(6,24),(6,29),(6,62),(6,65),(7,13),(7,19),(7,25),(7,29),(7,63),(7,64),(8,15),(8,21),(8,27),(8,28),(8,64),(8,65),(9,14),(9,20),(9,26),(9,28),(9,62),(9,63),(10,35),(10,44),(10,50),(10,81),(10,83),(11,35),(11,45),(11,51),(11,82),(11,84),(12,36),(12,46),(12,52),(12,81),(12,84),(13,36),(13,47),(13,53),(13,82),(13,83),(14,37),(14,48),(14,54),(14,81),(14,82),(15,37),(15,49),(15,55),(15,83),(15,84),(16,38),(16,44),(16,56),(16,85),(16,87),(17,38),(17,45),(17,57),(17,86),(17,88),(18,39),(18,46),(18,58),(18,85),(18,88),(19,39),(19,47),(19,59),(19,86),(19,87),(20,40),(20,48),(20,60),(20,85),(20,86),(21,40),(21,49),(21,61),(21,87),(21,88),(22,41),(22,50),(22,56),(22,89),(22,91),(23,41),(23,51),(23,57),(23,90),(23,92),(24,42),(24,52),(24,58),(24,89),(24,92),(25,42),(25,53),(25,59),(25,90),(25,91),(26,43),(26,54),(26,60),(26,89),(26,90),(27,43),(27,55),(27,61),(27,91),(27,92),(28,37),(28,40),(28,43),(28,112),(29,36),(29,39),(29,42),(29,112),(30,35),(30,38),(30,41),(30,112),(31,34),(31,44),(31,45),(31,46),(31,47),(31,48),(31,49),(32,34),(32,50),(32,51),(32,52),(32,53),(32,54),(32,55),(33,34),(33,56),(33,57),(33,58),(33,59),(33,60),(33,61),(34,75),(34,76),(34,77),(34,78),(34,79),(34,80),(35,66),(35,69),(35,113),(36,67),(36,70),(36,113),(37,68),(37,71),(37,113),(38,66),(38,72),(38,114),(39,67),(39,73),(39,114),(40,68),(40,74),(40,114),(41,69),(41,72),(41,115),(42,70),(42,73),(42,115),(43,71),(43,74),(43,115),(44,66),(44,75),(44,101),(44,103),(45,66),(45,76),(45,102),(45,104),(46,67),(46,77),(46,101),(46,104),(47,67),(47,78),(47,102),(47,103),(48,68),(48,79),(48,101),(48,102),(49,68),(49,80),(49,103),(49,104),(50,69),(50,75),(50,93),(50,95),(51,69),(51,76),(51,94),(51,96),(52,70),(52,77),(52,93),(52,96),(53,70),(53,78),(53,94),(53,95),(54,71),(54,79),(54,93),(54,94),(55,71),(55,80),(55,95),(55,96),(56,72),(56,75),(56,97),(56,99),(57,72),(57,76),(57,98),(57,100),(58,73),(58,77),(58,97),(58,100),(59,73),(59,78),(59,98),(59,99),(60,74),(60,79),(60,97),(60,98),(61,74),(61,80),(61,99),(61,100),(62,81),(62,85),(62,89),(62,112),(63,82),(63,86),(63,90),(63,112),(64,83),(64,87),(64,91),(64,112),(65,84),(65,88),(65,92),(65,112),(66,105),(66,118),(67,106),(67,118),(68,107),(68,118),(69,105),(69,116),(70,106),(70,116),(71,107),(71,116),(72,105),(72,117),(73,106),(73,117),(74,107),(74,117),(75,105),(75,108),(75,110),(76,105),(76,109),(76,111),(77,106),(77,108),(77,111),(78,106),(78,109),(78,110),(79,107),(79,108),(79,109),(80,107),(80,110),(80,111),(81,93),(81,101),(81,113),(82,94),(82,102),(82,113),(83,95),(83,103),(83,113),(84,96),(84,104),(84,113),(85,97),(85,101),(85,114),(86,98),(86,102),(86,114),(87,99),(87,103),(87,114),(88,100),(88,104),(88,114),(89,93),(89,97),(89,115),(90,94),(90,98),(90,115),(91,95),(91,99),(91,115),(92,96),(92,100),(92,115),(93,108),(93,116),(94,109),(94,116),(95,110),(95,116),(96,111),(96,116),(97,108),(97,117),(98,109),(98,117),(99,110),(99,117),(100,111),(100,117),(101,108),(101,118),(102,109),(102,118),(103,110),(103,118),(104,111),(104,118),(105,119),(106,119),(107,119),(108,119),(109,119),(110,119),(111,119),(112,113),(112,114),(112,115),(113,116),(113,118),(114,117),(114,118),(115,116),(115,117),(116,119),(117,119),(118,119)],120)
=> ? = 6
Description
The number of factors of a lattice as a Cartesian product of lattices.
Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.
Matching statistic: St001811
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001811: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 27%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001811: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 27%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [2,1] => 0 = 1 - 1
[1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0 = 1 - 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1 = 2 - 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0 = 1 - 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0 = 1 - 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2 = 3 - 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1 = 2 - 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2 = 3 - 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 0 = 1 - 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2 = 3 - 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 0 = 1 - 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 0 = 1 - 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ? = 1 - 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ? = 4 - 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ? = 3 - 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ? = 6 - 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ? = 2 - 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ? = 8 - 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ? = 3 - 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ? = 4 - 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ? = 1 - 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ? = 4 - 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ? = 3 - 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ? = 6 - 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => ? = 1 - 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ? = 4 - 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => ? = 1 - 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => ? = 1 - 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 1 - 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? = 5 - 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => ? = 4 - 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => ? = 10 - 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => ? = 3 - 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => ? = 15 - 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => ? = 6 - 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => ? = 10 - 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,1] => ? = 2 - 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,4,3,5,7,6,1] => ? = 10 - 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => ? = 8 - 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,3,7,6,5,1] => ? = 20 - 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,4,3,6,7,1] => ? = 3 - 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,4,3,7,6,1] => ? = 15 - 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => ? = 4 - 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 5 - 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => ? = 1 - 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,2,4,5,7,6,1] => ? = 5 - 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,2,4,6,5,7,1] => ? = 4 - 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => ? = 10 - 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [3,2,5,4,6,7,1] => ? = 3 - 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => ? = 15 - 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => ? = 6 - 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => ? = 10 - 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [4,3,2,5,6,7,1] => ? = 1 - 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [4,3,2,5,7,6,1] => ? = 5 - 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [4,3,2,6,5,7,1] => ? = 4 - 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,3,2,7,6,5,1] => ? = 10 - 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => ? = 1 - 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => ? = 5 - 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ? = 1 - 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 1 - 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1 - 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,6,8,7,1] => ? = 6 - 1
Description
The Castelnuovo-Mumford regularity of a permutation.
The ''Castelnuovo-Mumford regularity'' of a permutation $\sigma$ is the ''Castelnuovo-Mumford regularity'' of the ''matrix Schubert variety'' $X_\sigma$.
Equivalently, it is the difference between the degrees of the ''Grothendieck polynomial'' and the ''Schubert polynomial'' for $\sigma$. It can be computed by subtracting the ''Coxeter length'' [[St000018]] from the ''Rajchgot index'' [[St001759]].
Matching statistic: St001942
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001942: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 18%
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001942: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 18%
Values
[1] => 1 => 1 => ([(0,1)],2)
=> 1
[1,1] => 11 => 11 => ([(0,2),(2,1)],3)
=> 1
[2] => 10 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1] => 111 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2] => 110 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[2,1] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[3] => 100 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[1,1,1,1] => 1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,2] => 1110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[1,2,1] => 1101 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[1,3] => 1100 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
[2,1,1] => 1011 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[2,2] => 1010 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 3
[3,1] => 1001 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1
[4] => 1000 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
[1,1,1,1,1] => 11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,1,1,2] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4
[1,1,2,1] => 11101 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
[1,1,3] => 11100 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 6
[1,2,1,1] => 11011 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 2
[1,2,2] => 11010 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 8
[1,3,1] => 11001 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3
[1,4] => 11000 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
[2,1,1,1] => 10111 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 1
[2,1,2] => 10110 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 4
[2,2,1] => 10101 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
[2,3] => 10100 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 6
[3,1,1] => 10011 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1
[3,2] => 10010 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 4
[4,1] => 10001 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1
[5] => 10000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 1
[1,1,1,1,1,1] => 111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 1
[1,1,1,1,2] => 111110 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 5
[1,1,1,2,1] => 111101 => 111101 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
[1,1,1,3] => 111100 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 10
[1,1,2,1,1] => 111011 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3
[1,1,2,2] => 111010 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 15
[1,1,3,1] => 111001 => 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 6
[1,1,4] => 111000 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 10
[1,2,1,1,1] => 110111 => 110111 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 2
[1,2,1,2] => 110110 => 101110 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 10
[1,2,2,1] => 110101 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 8
[1,2,3] => 110100 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 20
[1,3,1,1] => 110011 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
[1,3,2] => 110010 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 15
[1,4,1] => 110001 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 4
[1,5] => 110000 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5
[2,1,1,1,1] => 101111 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 1
[2,1,1,2] => 101110 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 5
[2,1,2,1] => 101101 => 011101 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 4
[2,1,3] => 101100 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 10
[2,2,1,1] => 101011 => 011011 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 3
[2,2,2] => 101010 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ? = 15
[2,3,1] => 101001 => 100101 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 6
[2,4] => 101000 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 10
[3,1,1,1] => 100111 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 1
[3,1,2] => 100110 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ? = 5
[3,2,1] => 100101 => 001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 4
[3,3] => 100100 => 100010 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 10
Description
The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Matching statistic: St001095
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001095: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 18%
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001095: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 18%
Values
[1] => 1 => 1 => ([(0,1)],2)
=> 0 = 1 - 1
[1,1] => 11 => 11 => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2] => 10 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,1] => 111 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,2] => 110 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[2,1] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 1 - 1
[3] => 100 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 1 - 1
[1,1,1,1] => 1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,1,2] => 1110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[1,2,1] => 1101 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
[1,3] => 1100 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 - 1
[2,1,1] => 1011 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 - 1
[2,2] => 1010 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 3 - 1
[3,1] => 1001 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1 - 1
[4] => 1000 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 - 1
[1,1,1,1,1] => 11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,1,1,2] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 1
[1,1,2,1] => 11101 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
[1,1,3] => 11100 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 6 - 1
[1,2,1,1] => 11011 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 2 - 1
[1,2,2] => 11010 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 8 - 1
[1,3,1] => 11001 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3 - 1
[1,4] => 11000 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 - 1
[2,1,1,1] => 10111 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 1 - 1
[2,1,2] => 10110 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 4 - 1
[2,2,1] => 10101 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
[2,3] => 10100 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 6 - 1
[3,1,1] => 10011 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 - 1
[3,2] => 10010 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 4 - 1
[4,1] => 10001 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 - 1
[5] => 10000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 1 - 1
[1,1,1,1,1,1] => 111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 1 - 1
[1,1,1,1,2] => 111110 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 5 - 1
[1,1,1,2,1] => 111101 => 111101 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 - 1
[1,1,1,3] => 111100 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 10 - 1
[1,1,2,1,1] => 111011 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3 - 1
[1,1,2,2] => 111010 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 15 - 1
[1,1,3,1] => 111001 => 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 6 - 1
[1,1,4] => 111000 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 10 - 1
[1,2,1,1,1] => 110111 => 110111 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 2 - 1
[1,2,1,2] => 110110 => 101110 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 10 - 1
[1,2,2,1] => 110101 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 8 - 1
[1,2,3] => 110100 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 20 - 1
[1,3,1,1] => 110011 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 - 1
[1,3,2] => 110010 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 15 - 1
[1,4,1] => 110001 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 4 - 1
[1,5] => 110000 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5 - 1
[2,1,1,1,1] => 101111 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 1 - 1
[2,1,1,2] => 101110 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 5 - 1
[2,1,2,1] => 101101 => 011101 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 4 - 1
[2,1,3] => 101100 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 10 - 1
[2,2,1,1] => 101011 => 011011 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 3 - 1
[2,2,2] => 101010 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ? = 15 - 1
[2,3,1] => 101001 => 100101 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 6 - 1
[2,4] => 101000 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 10 - 1
[3,1,1,1] => 100111 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 1 - 1
[3,1,2] => 100110 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ? = 5 - 1
[3,2,1] => 100101 => 001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 4 - 1
[3,3] => 100100 => 100010 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 10 - 1
Description
The number of non-isomorphic posets with precisely one further covering relation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!