Your data matches 58 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00037: Graphs to partition of connected componentsInteger partitions
St000257: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 0
([],2)
=> [1,1]
=> 1
([(0,1)],2)
=> [2]
=> 0
([],3)
=> [1,1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([],4)
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 0
([(0,3),(1,2)],4)
=> [2,2]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
([],5)
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 0
Description
The number of distinct parts of a partition that occur at least twice. See Section 3.3.1 of [2].
Matching statistic: St001092
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St001092: Integer partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> 0
([],2)
=> [1,1]
=> [2]
=> 1
([(0,1)],2)
=> [2]
=> [1,1]
=> 0
([],3)
=> [1,1,1]
=> [2,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> [3]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [3]
=> 0
([],4)
=> [1,1,1,1]
=> [2,2]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [2,1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [3,1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,3),(1,2)],4)
=> [2,2]
=> [4]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [3,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([],5)
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [4,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,1,1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [3,1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [5]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [5]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [3,1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [5]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [5]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [5]
=> 0
([],0)
=> []
=> ?
=> ? = 0
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [7,7,1]
=> ? = 0
([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> [24]
=> ?
=> ? = 0
([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> [20]
=> ?
=> ? = 0
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,11),(4,12),(5,13),(5,18),(6,14),(6,19),(7,9),(7,13),(7,18),(8,10),(8,14),(8,19),(9,11),(9,15),(10,12),(10,16),(11,17),(12,17),(15,17),(15,18),(15,20),(16,17),(16,19),(16,20)],21)
=> [21]
=> ?
=> ? = 0
([(0,12),(1,10),(1,11),(2,11),(2,14),(3,10),(3,13),(4,8),(4,15),(5,9),(5,16),(6,15),(6,16),(6,17),(7,13),(7,14),(7,18),(8,12),(8,18),(9,12),(9,18),(10,17),(11,17),(13,15),(13,17),(14,16),(14,17),(15,18),(16,18)],19)
=> [19]
=> ?
=> ? = 0
([(0,13),(1,12),(2,9),(2,15),(3,8),(3,14),(4,10),(4,16),(5,11),(5,17),(6,16),(6,17),(6,18),(7,14),(7,15),(7,19),(8,12),(8,18),(9,12),(9,18),(10,13),(10,19),(11,13),(11,19),(14,16),(14,18),(15,17),(15,18),(16,19),(17,19)],20)
=> [20]
=> ?
=> ? = 0
([(0,15),(0,18),(1,14),(1,18),(2,16),(2,19),(3,17),(3,19),(4,6),(4,14),(5,7),(5,15),(6,16),(7,17),(8,9),(8,12),(8,13),(9,10),(9,11),(10,14),(10,18),(11,15),(11,18),(12,16),(12,19),(13,17),(13,19)],20)
=> [20]
=> ?
=> ? = 0
([(0,12),(1,9),(1,10),(2,16),(2,17),(3,8),(3,11),(4,11),(4,17),(5,12),(5,16),(6,7),(6,12),(6,16),(7,10),(7,13),(8,9),(8,14),(9,15),(10,15),(11,14),(13,15),(13,16),(13,17),(14,15),(14,17)],18)
=> [18]
=> ?
=> ? = 0
([(0,13),(1,18),(1,19),(2,17),(2,19),(3,11),(3,12),(4,13),(4,18),(5,6),(5,7),(6,17),(7,9),(7,17),(8,10),(8,13),(8,18),(9,11),(9,15),(10,12),(10,14),(11,16),(12,16),(14,16),(14,18),(14,19),(15,16),(15,17),(15,19)],20)
=> [20]
=> ?
=> ? = 0
([(0,11),(1,10),(1,16),(2,9),(2,15),(3,9),(3,11),(3,17),(4,6),(4,7),(4,14),(5,8),(5,14),(5,16),(6,12),(6,15),(7,13),(7,15),(8,12),(8,17),(9,18),(10,11),(10,17),(12,14),(12,18),(13,14),(13,16),(13,18),(15,18),(16,17),(17,18)],19)
=> [19]
=> ?
=> ? = 0
([(0,12),(1,10),(1,16),(2,11),(2,15),(3,11),(3,18),(4,9),(4,17),(5,10),(5,12),(5,19),(6,13),(6,18),(6,19),(7,14),(7,15),(7,16),(8,13),(8,15),(8,16),(9,12),(9,19),(10,20),(11,21),(13,20),(13,21),(14,17),(14,20),(14,21),(15,21),(16,20),(17,18),(17,19),(18,21),(19,20)],22)
=> [22]
=> ?
=> ? = 0
([(0,10),(0,16),(1,4),(1,13),(2,5),(2,7),(3,4),(3,5),(6,11),(6,12),(6,14),(7,8),(7,10),(8,13),(8,17),(9,11),(9,12),(9,17),(10,17),(11,15),(12,16),(13,15),(14,15),(14,16),(15,17),(16,17)],18)
=> [18]
=> ?
=> ? = 0
([(0,1),(0,2),(1,5),(2,7),(3,4),(3,16),(4,17),(5,9),(6,10),(6,15),(7,13),(8,15),(8,17),(8,18),(9,14),(9,18),(10,13),(10,19),(11,12),(11,17),(11,18),(12,16),(12,19),(13,14),(14,19),(15,16),(15,19),(16,17),(18,19)],20)
=> [20]
=> ?
=> ? = 0
([(0,18),(1,11),(1,12),(2,15),(2,17),(3,14),(3,16),(4,5),(4,6),(4,9),(5,11),(5,16),(6,11),(6,17),(7,12),(7,14),(7,18),(8,12),(8,15),(8,18),(9,16),(9,17),(10,14),(10,15),(10,18),(13,14),(13,15),(13,16),(13,17)],19)
=> [19]
=> ?
=> ? = 0
([(0,19),(1,18),(2,11),(2,12),(3,15),(3,17),(4,14),(4,16),(5,11),(5,14),(5,18),(6,11),(6,15),(6,18),(7,12),(7,16),(7,19),(8,12),(8,17),(8,19),(9,14),(9,15),(9,18),(10,16),(10,17),(10,19),(13,14),(13,15),(13,16),(13,17)],20)
=> [20]
=> ?
=> ? = 0
([(0,3),(0,4),(1,2),(1,11),(2,9),(3,12),(4,15),(5,11),(5,12),(6,13),(6,16),(7,10),(7,14),(8,9),(8,10),(9,17),(10,17),(11,16),(12,16),(13,15),(13,17),(14,15),(14,17)],18)
=> [18]
=> ?
=> ? = 0
([(0,16),(0,17),(1,15),(1,19),(2,14),(2,18),(3,20),(3,21),(4,9),(4,10),(5,9),(5,11),(6,8),(6,12),(7,8),(7,13),(10,14),(10,16),(11,15),(11,17),(12,18),(12,20),(13,19),(13,21),(14,22),(15,23),(16,22),(17,23),(18,22),(19,23),(20,22),(21,23)],24)
=> [24]
=> ?
=> ? = 0
([(0,1),(0,2),(0,3),(0,7),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(0,17),(0,18),(0,19),(0,20),(0,21),(0,22),(0,23),(1,4),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(1,12),(1,13),(1,16),(1,17),(1,18),(1,19),(1,20),(1,21),(1,22),(1,23),(2,3),(2,5),(2,6),(2,7),(2,9),(2,10),(2,12),(2,13),(2,14),(2,15),(2,16),(2,17),(2,18),(2,19),(2,20),(2,21),(2,22),(2,23),(3,4),(3,6),(3,7),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(3,21),(3,22),(3,23),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(4,21),(4,22),(4,23),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(5,16),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,22),(6,23),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,22),(8,23),(9,10),(9,11),(9,12),(9,14),(9,15),(9,16),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(10,11),(10,12),(10,13),(10,14),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,23),(12,14),(12,15),(12,16),(12,17),(12,19),(12,21),(12,22),(12,23),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(18,20),(18,21),(18,22),(18,23),(19,20),(19,22),(19,23),(20,21),(20,22),(20,23),(21,22),(21,23),(22,23)],24)
=> [24]
=> ?
=> ? = 0
([(0,1),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,15),(0,16),(0,17),(0,18),(0,19),(1,4),(1,6),(1,7),(1,8),(1,10),(1,11),(1,12),(1,13),(1,14),(1,16),(1,17),(1,18),(1,19),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(2,13),(2,14),(2,15),(2,16),(2,17),(2,18),(2,19),(3,4),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(3,14),(3,15),(3,16),(3,17),(3,18),(3,19),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,14),(4,15),(4,16),(4,17),(4,18),(4,19),(5,6),(5,7),(5,8),(5,9),(5,11),(5,14),(5,15),(5,16),(5,17),(5,18),(5,19),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(6,16),(6,17),(6,18),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,19),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(10,11),(10,12),(10,13),(10,14),(10,16),(10,18),(10,19),(11,12),(11,13),(11,15),(11,17),(11,18),(11,19),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(14,15),(14,16),(14,17),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> [20]
=> ?
=> ? = 0
([(0,1),(0,5),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(0,17),(0,18),(0,19),(0,20),(1,4),(1,6),(1,8),(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(1,19),(1,20),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(2,13),(2,16),(2,17),(2,18),(2,19),(2,20),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,12),(3,13),(3,14),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,14),(4,16),(4,18),(4,19),(4,20),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,13),(5,15),(5,17),(5,18),(5,19),(5,20),(6,7),(6,8),(6,9),(6,10),(6,12),(6,14),(6,15),(6,16),(6,17),(6,18),(6,19),(6,20),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(7,20),(8,9),(8,10),(8,11),(8,12),(8,14),(8,15),(8,16),(8,18),(8,19),(9,10),(9,11),(9,13),(9,14),(9,15),(9,17),(9,18),(9,20),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(10,17),(10,19),(10,20),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,19),(11,20),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(12,20),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,17),(15,18),(15,19),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,19),(18,20),(19,20)],21)
=> [21]
=> ?
=> ? = 0
Description
The number of distinct even parts of a partition. See Section 3.3.1 of [1].
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St000386: Dyck paths ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> [24]
=> ?
=> ?
=> ? = 0
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,11),(4,12),(5,13),(5,18),(6,14),(6,19),(7,9),(7,13),(7,18),(8,10),(8,14),(8,19),(9,11),(9,15),(10,12),(10,16),(11,17),(12,17),(15,17),(15,18),(15,20),(16,17),(16,19),(16,20)],21)
=> [21]
=> ?
=> ?
=> ? = 0
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0
([(0,12),(1,10),(1,11),(2,11),(2,14),(3,10),(3,13),(4,8),(4,15),(5,9),(5,16),(6,15),(6,16),(6,17),(7,13),(7,14),(7,18),(8,12),(8,18),(9,12),(9,18),(10,17),(11,17),(13,15),(13,17),(14,16),(14,17),(15,18),(16,18)],19)
=> [19]
=> ?
=> ?
=> ? = 0
([(0,13),(1,12),(2,9),(2,15),(3,8),(3,14),(4,10),(4,16),(5,11),(5,17),(6,16),(6,17),(6,18),(7,14),(7,15),(7,19),(8,12),(8,18),(9,12),(9,18),(10,13),(10,19),(11,13),(11,19),(14,16),(14,18),(15,17),(15,18),(16,19),(17,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,15),(0,18),(1,14),(1,18),(2,16),(2,19),(3,17),(3,19),(4,6),(4,14),(5,7),(5,15),(6,16),(7,17),(8,9),(8,12),(8,13),(9,10),(9,11),(10,14),(10,18),(11,15),(11,18),(12,16),(12,19),(13,17),(13,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,12),(1,9),(1,10),(2,16),(2,17),(3,8),(3,11),(4,11),(4,17),(5,12),(5,16),(6,7),(6,12),(6,16),(7,10),(7,13),(8,9),(8,14),(9,15),(10,15),(11,14),(13,15),(13,16),(13,17),(14,15),(14,17)],18)
=> [18]
=> ?
=> ?
=> ? = 0
([(0,13),(1,18),(1,19),(2,17),(2,19),(3,11),(3,12),(4,13),(4,18),(5,6),(5,7),(6,17),(7,9),(7,17),(8,10),(8,13),(8,18),(9,11),(9,15),(10,12),(10,14),(11,16),(12,16),(14,16),(14,18),(14,19),(15,16),(15,17),(15,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,11),(1,10),(1,16),(2,9),(2,15),(3,9),(3,11),(3,17),(4,6),(4,7),(4,14),(5,8),(5,14),(5,16),(6,12),(6,15),(7,13),(7,15),(8,12),(8,17),(9,18),(10,11),(10,17),(12,14),(12,18),(13,14),(13,16),(13,18),(15,18),(16,17),(17,18)],19)
=> [19]
=> ?
=> ?
=> ? = 0
([(0,12),(1,10),(1,16),(2,11),(2,15),(3,11),(3,18),(4,9),(4,17),(5,10),(5,12),(5,19),(6,13),(6,18),(6,19),(7,14),(7,15),(7,16),(8,13),(8,15),(8,16),(9,12),(9,19),(10,20),(11,21),(13,20),(13,21),(14,17),(14,20),(14,21),(15,21),(16,20),(17,18),(17,19),(18,21),(19,20)],22)
=> [22]
=> ?
=> ?
=> ? = 0
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,10),(0,16),(1,4),(1,13),(2,5),(2,7),(3,4),(3,5),(6,11),(6,12),(6,14),(7,8),(7,10),(8,13),(8,17),(9,11),(9,12),(9,17),(10,17),(11,15),(12,16),(13,15),(14,15),(14,16),(15,17),(16,17)],18)
=> [18]
=> ?
=> ?
=> ? = 0
([(0,1),(0,2),(1,5),(2,7),(3,4),(3,16),(4,17),(5,9),(6,10),(6,15),(7,13),(8,15),(8,17),(8,18),(9,14),(9,18),(10,13),(10,19),(11,12),(11,17),(11,18),(12,16),(12,19),(13,14),(14,19),(15,16),(15,19),(16,17),(18,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,18),(1,11),(1,12),(2,15),(2,17),(3,14),(3,16),(4,5),(4,6),(4,9),(5,11),(5,16),(6,11),(6,17),(7,12),(7,14),(7,18),(8,12),(8,15),(8,18),(9,16),(9,17),(10,14),(10,15),(10,18),(13,14),(13,15),(13,16),(13,17)],19)
=> [19]
=> ?
=> ?
=> ? = 0
([(0,19),(1,18),(2,11),(2,12),(3,15),(3,17),(4,14),(4,16),(5,11),(5,14),(5,18),(6,11),(6,15),(6,18),(7,12),(7,16),(7,19),(8,12),(8,17),(8,19),(9,14),(9,15),(9,18),(10,16),(10,17),(10,19),(13,14),(13,15),(13,16),(13,17)],20)
=> [20]
=> ?
=> ?
=> ? = 0
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,3),(0,4),(1,2),(1,11),(2,9),(3,12),(4,15),(5,11),(5,12),(6,13),(6,16),(7,10),(7,14),(8,9),(8,10),(9,17),(10,17),(11,16),(12,16),(13,15),(13,17),(14,15),(14,17)],18)
=> [18]
=> ?
=> ?
=> ? = 0
([(0,16),(0,17),(1,15),(1,19),(2,14),(2,18),(3,20),(3,21),(4,9),(4,10),(5,9),(5,11),(6,8),(6,12),(7,8),(7,13),(10,14),(10,16),(11,15),(11,17),(12,18),(12,20),(13,19),(13,21),(14,22),(15,23),(16,22),(17,23),(18,22),(19,23),(20,22),(21,23)],24)
=> [24]
=> ?
=> ?
=> ? = 0
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,1),(0,2),(0,3),(0,7),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(0,17),(0,18),(0,19),(0,20),(0,21),(0,22),(0,23),(1,4),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(1,12),(1,13),(1,16),(1,17),(1,18),(1,19),(1,20),(1,21),(1,22),(1,23),(2,3),(2,5),(2,6),(2,7),(2,9),(2,10),(2,12),(2,13),(2,14),(2,15),(2,16),(2,17),(2,18),(2,19),(2,20),(2,21),(2,22),(2,23),(3,4),(3,6),(3,7),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(3,21),(3,22),(3,23),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(4,21),(4,22),(4,23),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(5,16),(5,18),(5,19),(5,20),(5,21),(5,22),(5,23),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,22),(6,23),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,22),(8,23),(9,10),(9,11),(9,12),(9,14),(9,15),(9,16),(9,18),(9,19),(9,20),(9,21),(9,22),(9,23),(10,11),(10,12),(10,13),(10,14),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,23),(12,14),(12,15),(12,16),(12,17),(12,19),(12,21),(12,22),(12,23),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(17,21),(17,22),(17,23),(18,20),(18,21),(18,22),(18,23),(19,20),(19,22),(19,23),(20,21),(20,22),(20,23),(21,22),(21,23),(22,23)],24)
=> [24]
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of factors DDU in a Dyck path.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000256: Integer partitions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> 0
([],2)
=> [1,1]
=> [2]
=> 1
([(0,1)],2)
=> [2]
=> [1,1]
=> 0
([],3)
=> [1,1,1]
=> [3]
=> 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([],4)
=> [1,1,1,1]
=> [4]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([],5)
=> [1,1,1,1,1]
=> [5]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> ? = 1
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> [24]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,11),(4,12),(5,13),(5,18),(6,14),(6,19),(7,9),(7,13),(7,18),(8,10),(8,14),(8,19),(9,11),(9,15),(10,12),(10,16),(11,17),(12,17),(15,17),(15,18),(15,20),(16,17),(16,19),(16,20)],21)
=> [21]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,12),(1,10),(1,11),(2,11),(2,14),(3,10),(3,13),(4,8),(4,15),(5,9),(5,16),(6,15),(6,16),(6,17),(7,13),(7,14),(7,18),(8,12),(8,18),(9,12),(9,18),(10,17),(11,17),(13,15),(13,17),(14,16),(14,17),(15,18),(16,18)],19)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,13),(1,12),(2,9),(2,15),(3,8),(3,14),(4,10),(4,16),(5,11),(5,17),(6,16),(6,17),(6,18),(7,14),(7,15),(7,19),(8,12),(8,18),(9,12),(9,18),(10,13),(10,19),(11,13),(11,19),(14,16),(14,18),(15,17),(15,18),(16,19),(17,19)],20)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,15),(0,18),(1,14),(1,18),(2,16),(2,19),(3,17),(3,19),(4,6),(4,14),(5,7),(5,15),(6,16),(7,17),(8,9),(8,12),(8,13),(9,10),(9,11),(10,14),(10,18),(11,15),(11,18),(12,16),(12,19),(13,17),(13,19)],20)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,12),(1,9),(1,10),(2,16),(2,17),(3,8),(3,11),(4,11),(4,17),(5,12),(5,16),(6,7),(6,12),(6,16),(7,10),(7,13),(8,9),(8,14),(9,15),(10,15),(11,14),(13,15),(13,16),(13,17),(14,15),(14,17)],18)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,13),(1,18),(1,19),(2,17),(2,19),(3,11),(3,12),(4,13),(4,18),(5,6),(5,7),(6,17),(7,9),(7,17),(8,10),(8,13),(8,18),(9,11),(9,15),(10,12),(10,14),(11,16),(12,16),(14,16),(14,18),(14,19),(15,16),(15,17),(15,19)],20)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,11),(1,10),(1,16),(2,9),(2,15),(3,9),(3,11),(3,17),(4,6),(4,7),(4,14),(5,8),(5,14),(5,16),(6,12),(6,15),(7,13),(7,15),(8,12),(8,17),(9,18),(10,11),(10,17),(12,14),(12,18),(13,14),(13,16),(13,18),(15,18),(16,17),(17,18)],19)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,12),(1,10),(1,16),(2,11),(2,15),(3,11),(3,18),(4,9),(4,17),(5,10),(5,12),(5,19),(6,13),(6,18),(6,19),(7,14),(7,15),(7,16),(8,13),(8,15),(8,16),(9,12),(9,19),(10,20),(11,21),(13,20),(13,21),(14,17),(14,20),(14,21),(15,21),(16,20),(17,18),(17,19),(18,21),(19,20)],22)
=> [22]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(0,16),(1,4),(1,13),(2,5),(2,7),(3,4),(3,5),(6,11),(6,12),(6,14),(7,8),(7,10),(8,13),(8,17),(9,11),(9,12),(9,17),(10,17),(11,15),(12,16),(13,15),(14,15),(14,16),(15,17),(16,17)],18)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(1,5),(2,7),(3,4),(3,16),(4,17),(5,9),(6,10),(6,15),(7,13),(8,15),(8,17),(8,18),(9,14),(9,18),(10,13),(10,19),(11,12),(11,17),(11,18),(12,16),(12,19),(13,14),(14,19),(15,16),(15,19),(16,17),(18,19)],20)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,18),(1,11),(1,12),(2,15),(2,17),(3,14),(3,16),(4,5),(4,6),(4,9),(5,11),(5,16),(6,11),(6,17),(7,12),(7,14),(7,18),(8,12),(8,15),(8,18),(9,16),(9,17),(10,14),(10,15),(10,18),(13,14),(13,15),(13,16),(13,17)],19)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,19),(1,18),(2,11),(2,12),(3,15),(3,17),(4,14),(4,16),(5,11),(5,14),(5,18),(6,11),(6,15),(6,18),(7,12),(7,16),(7,19),(8,12),(8,17),(8,19),(9,14),(9,15),(9,18),(10,16),(10,17),(10,19),(13,14),(13,15),(13,16),(13,17)],20)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,3),(0,4),(1,2),(1,11),(2,9),(3,12),(4,15),(5,11),(5,12),(6,13),(6,16),(7,10),(7,14),(8,9),(8,10),(9,17),(10,17),(11,16),(12,16),(13,15),(13,17),(14,15),(14,17)],18)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,16),(0,17),(1,15),(1,19),(2,14),(2,18),(3,20),(3,21),(4,9),(4,10),(5,9),(5,11),(6,8),(6,12),(7,8),(7,13),(10,14),(10,16),(11,15),(11,17),(12,18),(12,20),(13,19),(13,21),(14,22),(15,23),(16,22),(17,23),(18,22),(19,23),(20,22),(21,23)],24)
=> [24]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
Description
The number of parts from which one can substract 2 and still get an integer partition.
Matching statistic: St000201
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
St000201: Binary trees ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [[.,.],.]
=> 1 = 0 + 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 2 = 1 + 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> 2 = 1 + 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
([],0)
=> []
=> []
=> .
=> ? = 0 + 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]]],.]
=> ? = 1 + 1
([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> [14,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> [24]
=> ?
=> ?
=> ? = 0 + 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0 + 1
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,11),(4,12),(5,13),(5,18),(6,14),(6,19),(7,9),(7,13),(7,18),(8,10),(8,14),(8,19),(9,11),(9,15),(10,12),(10,16),(11,17),(12,17),(15,17),(15,18),(15,20),(16,17),(16,19),(16,20)],21)
=> [21]
=> ?
=> ?
=> ? = 0 + 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,10),(1,4),(1,12),(2,10),(2,11),(3,11),(3,12),(4,8),(5,6),(5,7),(6,9),(6,13),(7,8),(7,13),(8,12),(9,10),(9,11),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,10),(1,9),(1,12),(2,8),(2,11),(3,5),(3,6),(3,7),(4,5),(4,6),(4,13),(5,11),(6,12),(7,11),(7,12),(8,10),(8,13),(9,10),(9,13),(11,13),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,10),(1,8),(1,14),(2,9),(2,13),(3,4),(3,11),(4,12),(5,7),(5,11),(5,13),(6,11),(6,13),(6,14),(7,12),(7,15),(8,10),(8,15),(9,10),(9,15),(11,12),(12,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,12),(1,10),(1,11),(2,11),(2,14),(3,10),(3,13),(4,8),(4,15),(5,9),(5,16),(6,15),(6,16),(6,17),(7,13),(7,14),(7,18),(8,12),(8,18),(9,12),(9,18),(10,17),(11,17),(13,15),(13,17),(14,16),(14,17),(15,18),(16,18)],19)
=> [19]
=> ?
=> ?
=> ? = 0 + 1
([(0,13),(1,12),(2,9),(2,15),(3,8),(3,14),(4,10),(4,16),(5,11),(5,17),(6,16),(6,17),(6,18),(7,14),(7,15),(7,19),(8,12),(8,18),(9,12),(9,18),(10,13),(10,19),(11,13),(11,19),(14,16),(14,18),(15,17),(15,18),(16,19),(17,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0 + 1
([(0,1),(0,2),(1,4),(2,3),(3,8),(4,9),(5,7),(5,8),(6,7),(6,9),(7,10),(8,10),(9,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]],.]
=> ? = 0 + 1
([(0,1),(0,2),(1,4),(2,6),(3,5),(3,12),(4,8),(5,9),(6,10),(7,8),(7,12),(8,11),(9,10),(9,12),(10,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,15),(0,18),(1,14),(1,18),(2,16),(2,19),(3,17),(3,19),(4,6),(4,14),(5,7),(5,15),(6,16),(7,17),(8,9),(8,12),(8,13),(9,10),(9,11),(10,14),(10,18),(11,15),(11,18),(12,16),(12,19),(13,17),(13,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,2),(1,3),(2,10),(3,9),(4,11),(5,12),(6,9),(6,11),(7,10),(7,12),(8,13),(8,14),(9,13),(10,14),(11,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,10),(1,6),(1,10),(2,3),(2,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(7,10),(8,9)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]],.]
=> ? = 0 + 1
([(0,11),(1,8),(1,14),(2,7),(2,10),(3,9),(3,10),(4,11),(4,14),(5,6),(5,11),(5,14),(6,9),(6,12),(7,8),(7,13),(8,12),(9,13),(10,13),(12,13),(12,14)],15)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,12),(1,9),(1,10),(2,16),(2,17),(3,8),(3,11),(4,11),(4,17),(5,12),(5,16),(6,7),(6,12),(6,16),(7,10),(7,13),(8,9),(8,14),(9,15),(10,15),(11,14),(13,15),(13,16),(13,17),(14,15),(14,17)],18)
=> [18]
=> ?
=> ?
=> ? = 0 + 1
([(0,13),(1,18),(1,19),(2,17),(2,19),(3,11),(3,12),(4,13),(4,18),(5,6),(5,7),(6,17),(7,9),(7,17),(8,10),(8,13),(8,18),(9,11),(9,15),(10,12),(10,14),(11,16),(12,16),(14,16),(14,18),(14,19),(15,16),(15,17),(15,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0 + 1
([(0,10),(1,6),(1,8),(2,5),(2,9),(3,7),(3,9),(4,7),(4,10),(4,12),(5,6),(5,11),(6,12),(7,11),(8,10),(8,12),(9,11),(11,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,11),(1,10),(1,16),(2,9),(2,15),(3,9),(3,11),(3,17),(4,6),(4,7),(4,14),(5,8),(5,14),(5,16),(6,12),(6,15),(7,13),(7,15),(8,12),(8,17),(9,18),(10,11),(10,17),(12,14),(12,18),(13,14),(13,16),(13,18),(15,18),(16,17),(17,18)],19)
=> [19]
=> ?
=> ?
=> ? = 0 + 1
([(0,12),(1,10),(1,16),(2,11),(2,15),(3,11),(3,18),(4,9),(4,17),(5,10),(5,12),(5,19),(6,13),(6,18),(6,19),(7,14),(7,15),(7,16),(8,13),(8,15),(8,16),(9,12),(9,19),(10,20),(11,21),(13,20),(13,21),(14,17),(14,20),(14,21),(15,21),(16,20),(17,18),(17,19),(18,21),(19,20)],22)
=> [22]
=> ?
=> ?
=> ? = 0 + 1
([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]],.]
=> ? = 0 + 1
([(0,1),(0,2),(1,4),(2,3),(3,10),(4,11),(5,7),(5,8),(6,7),(6,9),(7,13),(8,10),(8,13),(9,11),(9,13),(10,12),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,10),(0,16),(1,4),(1,13),(2,5),(2,7),(3,4),(3,5),(6,11),(6,12),(6,14),(7,8),(7,10),(8,13),(8,17),(9,11),(9,12),(9,17),(10,17),(11,15),(12,16),(13,15),(14,15),(14,16),(15,17),(16,17)],18)
=> [18]
=> ?
=> ?
=> ? = 0 + 1
([(0,1),(0,2),(1,5),(2,7),(3,4),(3,16),(4,17),(5,9),(6,10),(6,15),(7,13),(8,15),(8,17),(8,18),(9,14),(9,18),(10,13),(10,19),(11,12),(11,17),(11,18),(12,16),(12,19),(13,14),(14,19),(15,16),(15,19),(16,17),(18,19)],20)
=> [20]
=> ?
=> ?
=> ? = 0 + 1
([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]],.]
=> ? = 0 + 1
([(0,10),(1,3),(1,11),(2,10),(2,12),(3,6),(4,6),(4,8),(5,7),(5,9),(6,11),(7,10),(7,12),(8,11),(8,12),(9,11),(9,12)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,11),(1,10),(2,6),(2,8),(3,7),(3,9),(4,10),(4,12),(5,11),(5,13),(6,10),(6,12),(7,11),(7,13),(8,12),(8,13),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(2,8),(3,9),(4,7),(4,8),(5,7),(5,10),(6,9),(6,11),(7,13),(8,13),(9,12),(10,11),(10,13),(11,12),(12,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(2,10),(3,8),(4,10),(4,14),(5,9),(5,14),(6,9),(6,13),(7,8),(7,11),(8,16),(9,15),(10,12),(11,13),(11,16),(12,14),(12,16),(13,15),(14,15),(15,16)],17)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,13),(1,11),(1,12),(2,4),(2,11),(3,4),(3,10),(5,6),(5,7),(5,8),(6,10),(6,13),(7,11),(7,12),(8,12),(8,13),(9,10),(9,12),(9,13)],14)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,12),(1,10),(1,12),(2,9),(2,12),(3,6),(3,9),(4,7),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(8,10),(8,12),(9,11),(10,11)],13)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,18),(1,11),(1,12),(2,15),(2,17),(3,14),(3,16),(4,5),(4,6),(4,9),(5,11),(5,16),(6,11),(6,17),(7,12),(7,14),(7,18),(8,12),(8,15),(8,18),(9,16),(9,17),(10,14),(10,15),(10,18),(13,14),(13,15),(13,16),(13,17)],19)
=> [19]
=> ?
=> ?
=> ? = 0 + 1
([(0,19),(1,18),(2,11),(2,12),(3,15),(3,17),(4,14),(4,16),(5,11),(5,14),(5,18),(6,11),(6,15),(6,18),(7,12),(7,16),(7,19),(8,12),(8,17),(8,19),(9,14),(9,15),(9,18),(10,16),(10,17),(10,19),(13,14),(13,15),(13,16),(13,17)],20)
=> [20]
=> ?
=> ?
=> ? = 0 + 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,11),(2,9),(3,12),(4,15),(5,11),(5,12),(6,13),(6,16),(7,10),(7,14),(8,9),(8,10),(9,17),(10,17),(11,16),(12,16),(13,15),(13,17),(14,15),(14,17)],18)
=> [18]
=> ?
=> ?
=> ? = 0 + 1
([(0,16),(0,17),(1,15),(1,19),(2,14),(2,18),(3,20),(3,21),(4,9),(4,10),(5,9),(5,11),(6,8),(6,12),(7,8),(7,13),(10,14),(10,16),(11,15),(11,17),(12,18),(12,20),(13,19),(13,21),(14,22),(15,23),(16,22),(17,23),(18,22),(19,23),(20,22),(21,23)],24)
=> [24]
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]],.]
=> ? = 1 + 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]],.]
=> ? = 1 + 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1 + 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]],.]
=> ? = 1 + 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1 + 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]]],.]
=> ? = 1 + 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 0 + 1
Description
The number of leaf nodes in a binary tree. Equivalently, the number of cherries [1] in the complete binary tree. The number of binary trees of size $n$, at least $1$, with exactly one leaf node for is $2^{n-1}$, see [2]. The number of binary tree of size $n$, at least $3$, with exactly two leaf nodes is $n(n+1)2^{n-2}$, see [3].
Mp00117: Graphs Ore closureGraphs
Mp00111: Graphs complementGraphs
Mp00274: Graphs block-cut treeGraphs
St000379: Graphs ⟶ ℤResult quality: 33% values known / values provided: 43%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 0
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 0
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 0
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ? = 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(4,5)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> 0
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 2
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
Description
The number of Hamiltonian cycles in a graph. A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$. Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Mp00111: Graphs complementGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001586: Integer partitions ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 0
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 0
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 0
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 0
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 0
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> []
=> ?
=> ? = 0
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> []
=> ? = 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> []
=> ? = 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> []
=> ? = 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> []
=> ? = 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> []
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [3]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
Description
The number of odd parts smaller than the largest even part in an integer partition.
Matching statistic: St001657
Mp00111: Graphs complementGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001657: Integer partitions ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 0
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 0
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 0
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 0
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 0
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> []
=> ?
=> ? = 0
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> []
=> ? = 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> []
=> ? = 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> []
=> ? = 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> []
=> ? = 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> []
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [3]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
Description
The number of twos in an integer partition. The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Mp00111: Graphs complementGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 0 + 1
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 + 1
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 0 + 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 + 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 + 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 0 + 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 + 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 + 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [1]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> []
=> ?
=> ? = 0 + 1
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> []
=> ? = 1 + 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> []
=> ? = 1 + 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> []
=> ? = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0 + 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> []
=> ? = 2 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> []
=> ? = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> []
=> ? = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> []
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 1 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 1 = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [3]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St000455
Mp00111: Graphs complementGraphs
Mp00274: Graphs block-cut treeGraphs
Mp00154: Graphs coreGraphs
St000455: Graphs ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? = 0 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 0 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? = 0 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 0 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ? = 0 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 0 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> ([],1)
=> ? = 0 - 1
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? = 0 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
The following 48 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000456The monochromatic index of a connected graph. St001118The acyclic chromatic index of a graph. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000464The Schultz index of a connected graph. St001545The second Elser number of a connected graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000264The girth of a graph, which is not a tree. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000023The number of inner peaks of a permutation. St000779The tier of a permutation. St000099The number of valleys of a permutation, including the boundary. St000659The number of rises of length at least 2 of a Dyck path. St001570The minimal number of edges to add to make a graph Hamiltonian. St001060The distinguishing index of a graph. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St000618The number of self-evacuating tableaux of given shape. St001432The order dimension of the partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000699The toughness times the least common multiple of 1,.