Your data matches 641 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00243: Graphs weak duplicate orderPosets
Mp00074: Posets to graphGraphs
Mp00157: Graphs connected complementGraphs
St000264: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Mp00243: Graphs weak duplicate orderPosets
Mp00074: Posets to graphGraphs
Mp00157: Graphs connected complementGraphs
St000260: Graphs ⟶ ℤResult quality: 33% values known / values provided: 64%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2 = 3 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,4),(1,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ? = 4 - 1
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(3,4),(3,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 1
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(4,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 5 - 1
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 - 1
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,4),(3,6),(6,5)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(3,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ? = 4 - 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,6),(2,3),(2,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(3,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(3,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(3,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00243: Graphs weak duplicate orderPosets
Mp00074: Posets to graphGraphs
Mp00157: Graphs connected complementGraphs
St000772: Graphs ⟶ ℤResult quality: 33% values known / values provided: 64%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1 = 3 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,4),(1,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ? = 4 - 2
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(3,4),(3,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 2
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(4,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 5 - 2
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 - 2
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,4),(3,6),(6,5)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(3,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ? = 4 - 2
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,6),(2,3),(2,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(3,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(3,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(3,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00147: Graphs squareGraphs
Mp00111: Graphs complementGraphs
St000447: Graphs ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 67%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0 = 3 - 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0 = 3 - 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 3 - 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 4 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> 0 = 3 - 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0 = 3 - 3
([(3,6),(4,5),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 3
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 4 - 3
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 3
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 3
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 3 - 3
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 5 - 3
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 3
Description
The number of pairs of vertices of a graph with distance 3. This is the coefficient of the cubic term of the Wiener polynomial, also called Wiener polarity index.
Mp00157: Graphs connected complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 33% values known / values provided: 45%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 1 = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> 1 = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 1 = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> 1 = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 3 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 3 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 1 = 3 - 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> 1 = 3 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 1 = 3 - 2
([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> 1 = 3 - 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> 1 = 3 - 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10]]
=> 1 = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 3 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16]]
=> ? = 3 - 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [2,2,2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11],[12]]
=> ? = 3 - 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15]]
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14]]
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 2
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15]]
=> ? = 3 - 2
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14]]
=> ? = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15]]
=> ? = 3 - 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,2,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14],[15]]
=> ? = 3 - 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14]]
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14]]
=> ? = 3 - 2
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,4,3,3,2,2]
=> ?
=> ? = 3 - 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14],[15,16,17]]
=> ? = 3 - 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14],[15,16]]
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14],[15,16]]
=> ? = 3 - 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14,15]]
=> ? = 3 - 2
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 3 - 2
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,3,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14,15]]
=> ? = 4 - 2
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,2,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14],[15]]
=> ? = 3 - 2
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15]]
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 2
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15,16]]
=> ? = 4 - 2
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 2
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,3,3,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15],[16,17]]
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15,16]]
=> ? = 3 - 2
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15,16]]
=> ? = 3 - 2
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,3,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15]]
=> ? = 3 - 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 2
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15]]
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15]]
=> ? = 3 - 2
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13,14]]
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13]]
=> ? = 3 - 2
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00157: Graphs connected complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001696: Standard tableaux ⟶ ℤResult quality: 33% values known / values provided: 45%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 0 = 3 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> 0 = 3 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 0 = 3 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 0 = 3 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 0 = 3 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> 0 = 3 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 0 = 3 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> 0 = 3 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 3 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 0 = 3 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 0 = 3 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 3 - 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 0 = 3 - 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> 0 = 3 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 0 = 3 - 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 0 = 3 - 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> 0 = 3 - 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 0 = 3 - 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 0 = 3 - 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> 0 = 3 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 0 = 3 - 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 0 = 3 - 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 4 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> 0 = 3 - 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 0 = 3 - 3
([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> 0 = 3 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> 0 = 3 - 3
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> 0 = 3 - 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> 0 = 3 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> 0 = 3 - 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> 0 = 3 - 3
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> 0 = 3 - 3
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> 0 = 3 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> 0 = 3 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> 0 = 3 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> 0 = 3 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> 0 = 3 - 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> 0 = 3 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> 0 = 3 - 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10]]
=> 0 = 3 - 3
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> 0 = 3 - 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 3 - 3
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 0 = 3 - 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16]]
=> ? = 3 - 3
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [2,2,2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11],[12]]
=> ? = 3 - 3
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15]]
=> ? = 3 - 3
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 3
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14]]
=> ? = 3 - 3
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 3
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15]]
=> ? = 3 - 3
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14]]
=> ? = 3 - 3
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 3 - 3
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15]]
=> ? = 3 - 3
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,2,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14],[15]]
=> ? = 3 - 3
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14]]
=> ? = 3 - 3
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14]]
=> ? = 3 - 3
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 3
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,4,3,3,2,2]
=> ?
=> ? = 3 - 3
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14],[15,16,17]]
=> ? = 3 - 3
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14],[15,16]]
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14],[15,16]]
=> ? = 3 - 3
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14,15]]
=> ? = 3 - 3
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 3 - 3
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 3 - 3
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 3 - 3
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,3,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14,15]]
=> ? = 4 - 3
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,2,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14],[15]]
=> ? = 3 - 3
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15]]
=> ? = 3 - 3
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 3
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 3 - 3
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15,16]]
=> ? = 4 - 3
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 3
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,3,3,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15],[16,17]]
=> ? = 3 - 3
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15,16]]
=> ? = 3 - 3
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 3
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 3
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15,16]]
=> ? = 3 - 3
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,3,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15]]
=> ? = 3 - 3
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 3 - 3
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15]]
=> ? = 3 - 3
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 3 - 3
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13],[14,15]]
=> ? = 3 - 3
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3 - 3
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13,14]]
=> ? = 3 - 3
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13]]
=> ? = 3 - 3
Description
The natural major index of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation. The natural major index of a tableau with natural descent set $D$ is then $\sum_{d\in D} d$.
Mp00243: Graphs weak duplicate orderPosets
Mp00074: Posets to graphGraphs
Mp00157: Graphs connected complementGraphs
St001518: Graphs ⟶ ℤResult quality: 43% values known / values provided: 43%distinct values known / distinct values provided: 67%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1 = 3 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(1,6),(2,3),(3,6),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,6),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(4,5),(4,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,4),(1,5),(2,3),(3,5),(3,6)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,6),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(1,4),(1,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ? = 4 - 2
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,6),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(3,4),(3,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 2
Description
The number of graphs with the same ordinary spectrum as the given graph.
Mp00147: Graphs squareGraphs
Mp00111: Graphs complementGraphs
St000259: Graphs ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? = 3 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 3 - 1
([(3,6),(4,5),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 1
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 4 - 1
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 3 - 1
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3 - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 4 - 2
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [7]
=> []
=> ? = 4 - 2
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001901: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 3 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 4 - 2
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [7]
=> []
=> ? = 4 - 2
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 3 - 2
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
The following 631 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000699The toughness times the least common multiple of 1,. St001175The size of a partition minus the hook length of the base cell. St001473The absolute value of the sum of all entries of the Coxeter matrix of the corresponding LNakayama algebra. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000630The length of the shortest palindromic decomposition of a binary word. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001471The magnitude of a Dyck path. St000003The number of standard Young tableaux of the partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000159The number of distinct parts of the integer partition. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000345The number of refinements of a partition. St000517The Kreweras number of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000628The balance of a binary word. St000655The length of the minimal rise of a Dyck path. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000783The side length of the largest staircase partition fitting into a partition. St000847The number of standard Young tableaux whose descent set is the binary word. St000897The number of different multiplicities of parts of an integer partition. St000913The number of ways to refine the partition into singletons. St000935The number of ordered refinements of an integer partition. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001129The product of the squares of the parts of a partition. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001432The order dimension of the partition. St001481The minimal height of a peak of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001498The normalised height of a Nakayama algebra with magnitude 1. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001593This is the number of standard Young tableaux of the given shifted shape. St001597The Frobenius rank of a skew partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001780The order of promotion on the set of standard tableaux of given shape. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St000017The number of inversions of a standard tableau. St000142The number of even parts of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000290The major index of a binary word. St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000455The second largest eigenvalue of a graph if it is integral. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000629The defect of a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000995The largest even part of an integer partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001092The number of distinct even parts of a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001371The length of the longest Yamanouchi prefix of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001586The number of odd parts smaller than the largest even part in an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001730The number of times the path corresponding to a binary word crosses the base line. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001060The distinguishing index of a graph. St000322The skewness of a graph. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001578The minimal number of edges to add or remove to make a graph a line graph. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St000775The multiplicity of the largest eigenvalue in a graph. St000052The number of valleys of a Dyck path not on the x-axis. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001309The number of four-cliques in a graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001797The number of overfull subgraphs of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001307The number of induced stars on four vertices in a graph. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St000449The number of pairs of vertices of a graph with distance 4. St001496The number of graphs with the same Laplacian spectrum as the given graph. St000741The Colin de Verdière graph invariant. St000258The burning number of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000340The number of non-final maximal constant sub-paths of length greater than one. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000918The 2-limited packing number of a graph. St001093The detour number of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000079The number of alternating sign matrices for a given Dyck path. St000093The cardinality of a maximal independent set of vertices of a graph. St000273The domination number of a graph. St000287The number of connected components of a graph. St000349The number of different adjacency matrices of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000535The rank-width of a graph. St000544The cop number of a graph. St000553The number of blocks of a graph. St000659The number of rises of length at least 2 of a Dyck path. St000674The number of hills of a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000785The number of distinct colouring schemes of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000916The packing number of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001057The Grundy value of the game of creating an independent set in a graph. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001271The competition number of a graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001352The number of internal nodes in the modular decomposition of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001363The Euler characteristic of a graph according to Knill. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001393The induced matching number of a graph. St001463The number of distinct columns in the nullspace of a graph. St001512The minimum rank of a graph. St001642The Prague dimension of a graph. St001732The number of peaks visible from the left. St001734The lettericity of a graph. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001765The number of connected components of the friends and strangers graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St001917The order of toric promotion on the set of labellings of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000315The number of isolated vertices of a graph. St000376The bounce deficit of a Dyck path. St000403The Szeged index minus the Wiener index of a graph. St000448The number of pairs of vertices of a graph with distance 2. St000552The number of cut vertices of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001274The number of indecomposable injective modules with projective dimension equal to two. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001305The number of induced cycles on four vertices in a graph. St001306The number of induced paths on four vertices in a graph. St001308The number of induced paths on three vertices in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001374The Padmakar-Ivan index of a graph. St001521Half the total irregularity of a graph. St001522The total irregularity of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001647The number of edges that can be added without increasing the clique number. St001648The number of edges that can be added without increasing the chromatic number. St001689The number of celebrities in a graph. St001691The number of kings in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St001703The villainy of a graph. St001708The number of pairs of vertices of different degree in a graph. St001742The difference of the maximal and the minimal degree in a graph. St001764The number of non-convex subsets of vertices in a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001799The number of proper separations of a graph. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001957The number of Hasse diagrams with a given underlying undirected graph. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000981The length of the longest zigzag subpath. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000443The number of long tunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001746The coalition number of a graph. St000053The number of valleys of the Dyck path. St000086The number of subgraphs. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000172The Grundy number of a graph. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000268The number of strongly connected orientations of a graph. St000269The number of acyclic orientations of a graph. St000270The number of forests contained in a graph. St000286The number of connected components of the complement of a graph. St000335The difference of lower and upper interactions. St000343The number of spanning subgraphs of a graph. St000344The number of strongly connected outdegree sequences of a graph. St000363The number of minimal vertex covers of a graph. St000468The Hosoya index of a graph. St000617The number of global maxima of a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000722The number of different neighbourhoods in a graph. St000822The Hadwiger number of the graph. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000972The composition number of a graph. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001029The size of the core of a graph. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001072The evaluation of the Tutte polynomial of the graph at x and y equal to 3. St001073The number of nowhere zero 3-flows of a graph. St001108The 2-dynamic chromatic number of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001110The 3-dynamic chromatic number of a graph. St001112The 3-weak dynamic number of a graph. St001116The game chromatic number of a graph. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001302The number of minimally dominating sets of vertices of a graph. St001303The number of dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001316The domatic number of a graph. St001330The hat guessing number of a graph. St001386The number of prime labellings of a graph. St001474The evaluation of the Tutte polynomial of the graph at (x,y) equal to (2,-1). St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001494The Alon-Tarsi number of a graph. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001546The number of monomials in the Tutte polynomial of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001670The connected partition number of a graph. St001694The number of maximal dissociation sets in a graph. St001716The 1-improper chromatic number of a graph. St001725The harmonious chromatic number of a graph. St001883The mutual visibility number of a graph. St001963The tree-depth of a graph. St000081The number of edges of a graph. St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000171The degree of the graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000263The Szeged index of a graph. St000265The Wiener index of a graph. St000271The chromatic index of a graph. St000272The treewidth of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000311The number of vertices of odd degree in a graph. St000312The number of leaves in a graph. St000313The number of degree 2 vertices of a graph. St000323The minimal crossing number of a graph. St000350The sum of the vertex degrees of a graph. St000351The determinant of the adjacency matrix of a graph. St000361The second Zagreb index of a graph. St000362The size of a minimal vertex cover of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000369The dinv deficit of a Dyck path. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000386The number of factors DDU in a Dyck path. St000387The matching number of a graph. St000422The energy of a graph, if it is integral. St000454The largest eigenvalue of a graph if it is integral. St000465The first Zagreb index of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St000571The F-index (or forgotten topological index) of a graph. St000637The length of the longest cycle in a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000915The Ore degree of a graph. St000948The chromatic discriminant of a graph. St000951The dimension of $Ext^{1}(D(A),A)$ of the corresponding LNakayama algebra. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001117The game chromatic index of a graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001141The number of occurrences of hills of size 3 in a Dyck path. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001281The normalized isoperimetric number of a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001319The minimal number of occurrences of the star-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001341The number of edges in the center of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001362The normalized Knill dimension of a graph. St001395The number of strictly unfriendly partitions of a graph. St001458The rank of the adjacency matrix of a graph. St001459The number of zero columns in the nullspace of a graph. St001479The number of bridges of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001592The maximal number of simple paths between any two different vertices of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001649The length of a longest trail in a graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001736The total number of cycles in a graph. St001743The discrepancy of a graph. St001783The number of odd automorphisms of a graph. St001792The arboricity of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001812The biclique partition number of a graph. St001826The maximal number of leaves on a vertex of a graph. St001869The maximum cut size of a graph. St001871The number of triconnected components of a graph. St001962The proper pathwidth of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001890The maximum magnitude of the Möbius function of a poset. St000327The number of cover relations in a poset. St000181The number of connected components of the Hasse diagram for the poset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001834The number of non-isomorphic minors of a graph. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001570The minimal number of edges to add to make a graph Hamiltonian. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000092The number of outer peaks of a permutation. St000213The number of weak exceedances (also weak excedences) of a permutation. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001530The depth of a Dyck path. St001741The largest integer such that all patterns of this size are contained in the permutation. St000056The decomposition (or block) number of a permutation. St000078The number of alternating sign matrices whose left key is the permutation. St000255The number of reduced Kogan faces with the permutation as type. St000314The number of left-to-right-maxima of a permutation. St000353The number of inner valleys of a permutation. St000487The length of the shortest cycle of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000570The Edelman-Greene number of a permutation. St000654The first descent of a permutation. St000711The number of big exceedences of a permutation. St000756The sum of the positions of the left to right maxima of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St000873The aix statistic of a permutation. St000889The number of alternating sign matrices with the same antidiagonal sums. St000989The number of final rises of a permutation. St001162The minimum jump of a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001344The neighbouring number of a permutation. St001469The holeyness of a permutation. St001470The cyclic holeyness of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000210Minimum over maximum difference of elements in cycles. St000217The number of occurrences of the pattern 312 in a permutation. St000221The number of strong fixed points of a permutation. St000234The number of global ascents of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000317The cycle descent number of a permutation. St000338The number of pixed points of a permutation. St000358The number of occurrences of the pattern 31-2. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000461The rix statistic of a permutation. St000500Eigenvalues of the random-to-random operator acting on the regular representation. St000516The number of stretching pairs of a permutation. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000649The number of 3-excedences of a permutation. St000663The number of right floats of a permutation. St000664The number of right ropes of a permutation. St000666The number of right tethers of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000732The number of double deficiencies of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000962The 3-shifted major index of a permutation. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001381The fertility of a permutation. St001411The number of patterns 321 or 3412 in a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001513The number of nested exceedences of a permutation. St001537The number of cyclic crossings of a permutation. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001766The number of cells which are not occupied by the same tile in all reduced pipe dreams corresponding to a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001847The number of occurrences of the pattern 1432 in a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000879The number of long braid edges in the graph of braid moves of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001180Number of indecomposable injective modules with projective dimension at most 1. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St000015The number of peaks of a Dyck path. St000953The largest degree of an irreducible factor of the Coxeter polynomial of the Dyck path over the rational numbers. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000120The number of left tunnels of a Dyck path. St000331The number of upper interactions of a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000950Number of tilting modules of the corresponding LNakayama algebra, where a tilting module is a generalised tilting module of projective dimension 1. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001645The pebbling number of a connected graph. St000069The number of maximal elements of a poset. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000479The Ramsey number of a graph. St001651The Frankl number of a lattice. St001368The number of vertices of maximal degree in a graph. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000735The last entry on the main diagonal of a standard tableau. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000661The number of rises of length 3 of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.