searching the database
Your data matches 327 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000302
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],2)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],3)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],1)
=> 0
([(3,4)],5)
=> ([],4)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([],6)
=> ([],6)
=> ([],1)
=> 0
([(4,5)],6)
=> ([],5)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(5,6)],7)
=> ([],6)
=> ([],1)
=> 0
([(4,6),(5,6)],7)
=> ([],5)
=> ([],1)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000087
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],3)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],4)
=> ([],4)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],5)
=> ([],5)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 7 = 6 + 1
([],6)
=> ([],6)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 7 = 6 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 7 = 6 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 7 = 6 + 1
([(5,6)],7)
=> ([],6)
=> ([],1)
=> 1 = 0 + 1
([(4,6),(5,6)],7)
=> ([],5)
=> ([],1)
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> 1 = 0 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
Description
The number of induced subgraphs.
A subgraph $H \subseteq G$ is induced if $E(H)$ consists of all edges in $E(G)$ that connect the vertices of $H$.
Matching statistic: St000718
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([],2)
=> ([],2)
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([],3)
=> ([],3)
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([],4)
=> ([],4)
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([],6)
=> ([],6)
=> ([],6)
=> 0
([(4,5)],6)
=> ([],5)
=> ([],5)
=> 0
([(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([],4)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],3)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],2)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],3)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],2)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],2)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(5,6)],7)
=> ([],6)
=> ([],6)
=> 0
([(4,6),(5,6)],7)
=> ([],5)
=> ([],5)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([],4)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],3)
=> 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> ([],2)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ([],1)
=> 0
([(3,6),(4,5)],7)
=> ([],5)
=> ([],5)
=> 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 6
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
Description
The largest Laplacian eigenvalue of a graph if it is integral.
This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral.
Various results are collected in Section 3.9 of [1]
Matching statistic: St000422
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([],2)
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([],3)
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([],4)
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([],6)
=> ([],6)
=> 0
([(4,5)],6)
=> ([],5)
=> 0
([(3,5),(4,5)],6)
=> ([],4)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 6
([(5,6)],7)
=> ([],6)
=> 0
([(4,6),(5,6)],7)
=> ([],5)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> 0
([(3,6),(4,5)],7)
=> ([],5)
=> 0
([(3,6),(4,5),(5,6)],7)
=> ([],4)
=> 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 6
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 6
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 6
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000741
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],2)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],3)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],1)
=> 0
([(3,4)],5)
=> ([],4)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([],6)
=> ([],6)
=> ([],1)
=> 0
([(4,5)],6)
=> ([],5)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(5,6)],7)
=> ([],6)
=> ([],1)
=> 0
([(4,6),(5,6)],7)
=> ([],5)
=> ([],1)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> ([],1)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ([],1)
=> 0
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> 0
([(3,6),(4,5),(5,6)],7)
=> ([],4)
=> ([],1)
=> 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6
Description
The Colin de Verdière graph invariant.
Matching statistic: St000068
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 6 + 1
([],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 6 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 6 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,13),(1,17),(1,18),(1,19),(2,8),(2,9),(2,13),(2,14),(2,15),(2,16),(3,9),(3,11),(3,12),(3,23),(3,24),(3,25),(4,8),(4,10),(4,12),(4,20),(4,21),(4,22),(5,16),(5,19),(5,22),(5,25),(5,27),(5,28),(6,15),(6,18),(6,21),(6,24),(6,26),(6,28),(7,14),(7,17),(7,20),(7,23),(7,26),(7,27),(8,35),(8,36),(8,37),(8,72),(9,38),(9,39),(9,40),(9,72),(10,41),(10,42),(10,43),(10,72),(11,44),(11,45),(11,46),(11,72),(12,32),(12,33),(12,34),(12,72),(13,29),(13,30),(13,31),(13,72),(14,29),(14,35),(14,38),(14,48),(14,49),(15,30),(15,36),(15,39),(15,48),(15,50),(16,31),(16,37),(16,40),(16,49),(16,50),(17,29),(17,41),(17,44),(17,51),(17,52),(18,30),(18,42),(18,45),(18,51),(18,53),(19,31),(19,43),(19,46),(19,52),(19,53),(20,32),(20,35),(20,41),(20,54),(20,55),(21,33),(21,36),(21,42),(21,54),(21,56),(22,34),(22,37),(22,43),(22,55),(22,56),(23,32),(23,38),(23,44),(23,57),(23,58),(24,33),(24,39),(24,45),(24,57),(24,59),(25,34),(25,40),(25,46),(25,58),(25,59),(26,47),(26,48),(26,51),(26,54),(26,57),(27,47),(27,49),(27,52),(27,55),(27,58),(28,47),(28,50),(28,53),(28,56),(28,59),(29,73),(29,76),(30,74),(30,76),(31,75),(31,76),(32,73),(32,77),(33,74),(33,77),(34,75),(34,77),(35,60),(35,61),(35,73),(36,60),(36,62),(36,74),(37,61),(37,62),(37,75),(38,63),(38,64),(38,73),(39,63),(39,65),(39,74),(40,64),(40,65),(40,75),(41,66),(41,67),(41,73),(42,66),(42,68),(42,74),(43,67),(43,68),(43,75),(44,69),(44,70),(44,73),(45,69),(45,71),(45,74),(46,70),(46,71),(46,75),(47,76),(47,77),(48,60),(48,63),(48,76),(49,61),(49,64),(49,76),(50,62),(50,65),(50,76),(51,66),(51,69),(51,76),(52,67),(52,70),(52,76),(53,68),(53,71),(53,76),(54,60),(54,66),(54,77),(55,61),(55,67),(55,77),(56,62),(56,68),(56,77),(57,63),(57,69),(57,77),(58,64),(58,70),(58,77),(59,65),(59,71),(59,77),(60,78),(61,78),(62,78),(63,78),(64,78),(65,78),(66,78),(67,78),(68,78),(69,78),(70,78),(71,78),(72,73),(72,74),(72,75),(73,78),(74,78),(75,78),(76,78),(77,78)],79)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,13),(1,17),(1,18),(1,19),(2,8),(2,9),(2,13),(2,14),(2,15),(2,16),(3,9),(3,11),(3,12),(3,23),(3,24),(3,25),(4,8),(4,10),(4,12),(4,20),(4,21),(4,22),(5,16),(5,19),(5,22),(5,25),(5,27),(5,28),(6,15),(6,18),(6,21),(6,24),(6,26),(6,28),(7,14),(7,17),(7,20),(7,23),(7,26),(7,27),(8,35),(8,36),(8,37),(8,72),(9,38),(9,39),(9,40),(9,72),(10,41),(10,42),(10,43),(10,72),(11,44),(11,45),(11,46),(11,72),(12,32),(12,33),(12,34),(12,72),(13,29),(13,30),(13,31),(13,72),(14,29),(14,35),(14,38),(14,48),(14,49),(15,30),(15,36),(15,39),(15,48),(15,50),(16,31),(16,37),(16,40),(16,49),(16,50),(17,29),(17,41),(17,44),(17,51),(17,52),(18,30),(18,42),(18,45),(18,51),(18,53),(19,31),(19,43),(19,46),(19,52),(19,53),(20,32),(20,35),(20,41),(20,54),(20,55),(21,33),(21,36),(21,42),(21,54),(21,56),(22,34),(22,37),(22,43),(22,55),(22,56),(23,32),(23,38),(23,44),(23,57),(23,58),(24,33),(24,39),(24,45),(24,57),(24,59),(25,34),(25,40),(25,46),(25,58),(25,59),(26,47),(26,48),(26,51),(26,54),(26,57),(27,47),(27,49),(27,52),(27,55),(27,58),(28,47),(28,50),(28,53),(28,56),(28,59),(29,73),(29,76),(30,74),(30,76),(31,75),(31,76),(32,73),(32,77),(33,74),(33,77),(34,75),(34,77),(35,60),(35,61),(35,73),(36,60),(36,62),(36,74),(37,61),(37,62),(37,75),(38,63),(38,64),(38,73),(39,63),(39,65),(39,74),(40,64),(40,65),(40,75),(41,66),(41,67),(41,73),(42,66),(42,68),(42,74),(43,67),(43,68),(43,75),(44,69),(44,70),(44,73),(45,69),(45,71),(45,74),(46,70),(46,71),(46,75),(47,76),(47,77),(48,60),(48,63),(48,76),(49,61),(49,64),(49,76),(50,62),(50,65),(50,76),(51,66),(51,69),(51,76),(52,67),(52,70),(52,76),(53,68),(53,71),(53,76),(54,60),(54,66),(54,77),(55,61),(55,67),(55,77),(56,62),(56,68),(56,77),(57,63),(57,69),(57,77),(58,64),(58,70),(58,77),(59,65),(59,71),(59,77),(60,78),(61,78),(62,78),(63,78),(64,78),(65,78),(66,78),(67,78),(68,78),(69,78),(70,78),(71,78),(72,73),(72,74),(72,75),(73,78),(74,78),(75,78),(76,78),(77,78)],79)
=> ? = 6 + 1
([(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 1 = 0 + 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 1 = 0 + 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 6 + 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ?
=> ? = 6 + 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ?
=> ? = 6 + 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,24),(1,25),(1,26),(1,34),(2,10),(2,11),(2,12),(2,21),(2,22),(2,23),(2,33),(3,9),(3,12),(3,14),(3,30),(3,31),(3,32),(3,36),(4,9),(4,11),(4,13),(4,27),(4,28),(4,29),(4,35),(5,17),(5,19),(5,20),(5,23),(5,26),(5,29),(5,32),(6,16),(6,18),(6,20),(6,22),(6,25),(6,28),(6,31),(7,15),(7,18),(7,19),(7,21),(7,24),(7,27),(7,30),(8,15),(8,16),(8,17),(8,33),(8,34),(8,35),(8,36),(9,40),(9,41),(9,42),(9,60),(9,144),(10,37),(10,38),(10,39),(10,59),(10,144),(11,43),(11,47),(11,48),(11,49),(11,144),(12,44),(12,50),(12,51),(12,52),(12,144),(13,45),(13,53),(13,54),(13,55),(13,144),(14,46),(14,56),(14,57),(14,58),(14,144),(15,74),(15,75),(15,77),(15,80),(15,83),(15,86),(16,74),(16,76),(16,78),(16,81),(16,84),(16,87),(17,75),(17,76),(17,79),(17,82),(17,85),(17,88),(18,61),(18,64),(18,67),(18,70),(18,73),(18,74),(19,61),(19,62),(19,65),(19,68),(19,71),(19,75),(20,61),(20,63),(20,66),(20,69),(20,72),(20,76),(21,37),(21,47),(21,50),(21,62),(21,64),(21,77),(22,38),(22,48),(22,51),(22,63),(22,64),(22,78),(23,39),(23,49),(23,52),(23,62),(23,63),(23,79),(24,37),(24,53),(24,56),(24,65),(24,67),(24,80),(25,38),(25,54),(25,57),(25,66),(25,67),(25,81),(26,39),(26,55),(26,58),(26,65),(26,66),(26,82),(27,40),(27,47),(27,53),(27,68),(27,70),(27,83),(28,41),(28,48),(28,54),(28,69),(28,70),(28,84),(29,42),(29,49),(29,55),(29,68),(29,69),(29,85),(30,40),(30,50),(30,56),(30,71),(30,73),(30,86),(31,41),(31,51),(31,57),(31,72),(31,73),(31,87),(32,42),(32,52),(32,58),(32,71),(32,72),(32,88),(33,43),(33,44),(33,59),(33,77),(33,78),(33,79),(34,45),(34,46),(34,59),(34,80),(34,81),(34,82),(35,43),(35,45),(35,60),(35,83),(35,84),(35,85),(36,44),(36,46),(36,60),(36,86),(36,87),(36,88),(37,90),(37,145),(37,152),(38,91),(38,146),(38,152),(39,92),(39,147),(39,152),(40,93),(40,145),(40,153),(41,94),(41,146),(41,153),(42,95),(42,147),(42,153),(43,120),(43,121),(43,122),(43,148),(44,123),(44,124),(44,125),(44,148),(45,126),(45,127),(45,128),(45,148),(46,129),(46,130),(46,131),(46,148),(47,96),(47,98),(47,120),(47,145),(48,97),(48,98),(48,121),(48,146),(49,96),(49,97),(49,122),(49,147),(50,99),(50,101),(50,123),(50,145),(51,100),(51,101),(51,124),(51,146),(52,99),(52,100),(52,125),(52,147),(53,102),(53,104),(53,126),(53,145),(54,103),(54,104),(54,127),(54,146),(55,102),(55,103),(55,128),(55,147),(56,105),(56,107),(56,129),(56,145),(57,106),(57,107),(57,130),(57,146),(58,105),(58,106),(58,131),(58,147),(59,90),(59,91),(59,92),(59,148),(60,93),(60,94),(60,95),(60,148),(61,89),(61,152),(61,153),(62,96),(62,99),(62,108),(62,152),(63,97),(63,100),(63,109),(63,152),(64,98),(64,101),(64,110),(64,152),(65,102),(65,105),(65,111),(65,152),(66,103),(66,106),(66,112),(66,152),(67,104),(67,107),(67,113),(67,152),(68,96),(68,102),(68,114),(68,153),(69,97),(69,103),(69,115),(69,153),(70,98),(70,104),(70,116),(70,153),(71,99),(71,105),(71,117),(71,153),(72,100),(72,106),(72,118),(72,153),(73,101),(73,107),(73,119),(73,153),(74,89),(74,110),(74,113),(74,116),(74,119),(75,89),(75,108),(75,111),(75,114),(75,117),(76,89),(76,109),(76,112),(76,115),(76,118),(77,90),(77,108),(77,110),(77,120),(77,123),(78,91),(78,109),(78,110),(78,121),(78,124),(79,92),(79,108),(79,109),(79,122),(79,125),(80,90),(80,111),(80,113),(80,126),(80,129),(81,91),(81,112),(81,113),(81,127),(81,130),(82,92),(82,111),(82,112),(82,128),(82,131),(83,93),(83,114),(83,116),(83,120),(83,126),(84,94),(84,115),(84,116),(84,121),(84,127),(85,95),(85,114),(85,115),(85,122),(85,128),(86,93),(86,117),(86,119),(86,123),(86,129),(87,94),(87,118),(87,119),(87,124),(87,130),(88,95),(88,117),(88,118),(88,125),(88,131),(89,154),(89,155),(90,149),(90,154),(91,150),(91,154),(92,151),(92,154),(93,149),(93,155),(94,150),(94,155),(95,151),(95,155),(96,132),(96,156),(97,133),(97,156),(98,134),(98,156),(99,135),(99,156),(100,136),(100,156),(101,137),(101,156),(102,138),(102,156),(103,139),(103,156),(104,140),(104,156),(105,141),(105,156),(106,142),(106,156),(107,143),(107,156),(108,132),(108,135),(108,154),(109,133),(109,136),(109,154),(110,134),(110,137),(110,154),(111,138),(111,141),(111,154),(112,139),(112,142),(112,154),(113,140),(113,143),(113,154),(114,132),(114,138),(114,155),(115,133),(115,139),(115,155),(116,134),(116,140),(116,155),(117,135),(117,141),(117,155),(118,136),(118,142),(118,155),(119,137),(119,143),(119,155),(120,132),(120,134),(120,149),(121,133),(121,134),(121,150),(122,132),(122,133),(122,151),(123,135),(123,137),(123,149),(124,136),(124,137),(124,150),(125,135),(125,136),(125,151),(126,138),(126,140),(126,149),(127,139),(127,140),(127,150),(128,138),(128,139),(128,151),(129,141),(129,143),(129,149),(130,142),(130,143),(130,150),(131,141),(131,142),(131,151),(132,157),(133,157),(134,157),(135,157),(136,157),(137,157),(138,157),(139,157),(140,157),(141,157),(142,157),(143,157),(144,145),(144,146),(144,147),(144,148),(145,149),(145,156),(146,150),(146,156),(147,151),(147,156),(148,149),(148,150),(148,151),(149,157),(150,157),(151,157),(152,154),(152,156),(153,155),(153,156),(154,157),(155,157),(156,157)],158)
=> ?
=> ? = 6 + 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ?
=> ? = 6 + 1
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,24),(1,25),(1,26),(1,34),(2,10),(2,11),(2,12),(2,21),(2,22),(2,23),(2,33),(3,9),(3,12),(3,14),(3,30),(3,31),(3,32),(3,36),(4,9),(4,11),(4,13),(4,27),(4,28),(4,29),(4,35),(5,17),(5,19),(5,20),(5,23),(5,26),(5,29),(5,32),(6,16),(6,18),(6,20),(6,22),(6,25),(6,28),(6,31),(7,15),(7,18),(7,19),(7,21),(7,24),(7,27),(7,30),(8,15),(8,16),(8,17),(8,33),(8,34),(8,35),(8,36),(9,40),(9,41),(9,42),(9,60),(9,144),(10,37),(10,38),(10,39),(10,59),(10,144),(11,43),(11,47),(11,48),(11,49),(11,144),(12,44),(12,50),(12,51),(12,52),(12,144),(13,45),(13,53),(13,54),(13,55),(13,144),(14,46),(14,56),(14,57),(14,58),(14,144),(15,74),(15,75),(15,77),(15,80),(15,83),(15,86),(16,74),(16,76),(16,78),(16,81),(16,84),(16,87),(17,75),(17,76),(17,79),(17,82),(17,85),(17,88),(18,61),(18,64),(18,67),(18,70),(18,73),(18,74),(19,61),(19,62),(19,65),(19,68),(19,71),(19,75),(20,61),(20,63),(20,66),(20,69),(20,72),(20,76),(21,37),(21,47),(21,50),(21,62),(21,64),(21,77),(22,38),(22,48),(22,51),(22,63),(22,64),(22,78),(23,39),(23,49),(23,52),(23,62),(23,63),(23,79),(24,37),(24,53),(24,56),(24,65),(24,67),(24,80),(25,38),(25,54),(25,57),(25,66),(25,67),(25,81),(26,39),(26,55),(26,58),(26,65),(26,66),(26,82),(27,40),(27,47),(27,53),(27,68),(27,70),(27,83),(28,41),(28,48),(28,54),(28,69),(28,70),(28,84),(29,42),(29,49),(29,55),(29,68),(29,69),(29,85),(30,40),(30,50),(30,56),(30,71),(30,73),(30,86),(31,41),(31,51),(31,57),(31,72),(31,73),(31,87),(32,42),(32,52),(32,58),(32,71),(32,72),(32,88),(33,43),(33,44),(33,59),(33,77),(33,78),(33,79),(34,45),(34,46),(34,59),(34,80),(34,81),(34,82),(35,43),(35,45),(35,60),(35,83),(35,84),(35,85),(36,44),(36,46),(36,60),(36,86),(36,87),(36,88),(37,90),(37,145),(37,152),(38,91),(38,146),(38,152),(39,92),(39,147),(39,152),(40,93),(40,145),(40,153),(41,94),(41,146),(41,153),(42,95),(42,147),(42,153),(43,120),(43,121),(43,122),(43,148),(44,123),(44,124),(44,125),(44,148),(45,126),(45,127),(45,128),(45,148),(46,129),(46,130),(46,131),(46,148),(47,96),(47,98),(47,120),(47,145),(48,97),(48,98),(48,121),(48,146),(49,96),(49,97),(49,122),(49,147),(50,99),(50,101),(50,123),(50,145),(51,100),(51,101),(51,124),(51,146),(52,99),(52,100),(52,125),(52,147),(53,102),(53,104),(53,126),(53,145),(54,103),(54,104),(54,127),(54,146),(55,102),(55,103),(55,128),(55,147),(56,105),(56,107),(56,129),(56,145),(57,106),(57,107),(57,130),(57,146),(58,105),(58,106),(58,131),(58,147),(59,90),(59,91),(59,92),(59,148),(60,93),(60,94),(60,95),(60,148),(61,89),(61,152),(61,153),(62,96),(62,99),(62,108),(62,152),(63,97),(63,100),(63,109),(63,152),(64,98),(64,101),(64,110),(64,152),(65,102),(65,105),(65,111),(65,152),(66,103),(66,106),(66,112),(66,152),(67,104),(67,107),(67,113),(67,152),(68,96),(68,102),(68,114),(68,153),(69,97),(69,103),(69,115),(69,153),(70,98),(70,104),(70,116),(70,153),(71,99),(71,105),(71,117),(71,153),(72,100),(72,106),(72,118),(72,153),(73,101),(73,107),(73,119),(73,153),(74,89),(74,110),(74,113),(74,116),(74,119),(75,89),(75,108),(75,111),(75,114),(75,117),(76,89),(76,109),(76,112),(76,115),(76,118),(77,90),(77,108),(77,110),(77,120),(77,123),(78,91),(78,109),(78,110),(78,121),(78,124),(79,92),(79,108),(79,109),(79,122),(79,125),(80,90),(80,111),(80,113),(80,126),(80,129),(81,91),(81,112),(81,113),(81,127),(81,130),(82,92),(82,111),(82,112),(82,128),(82,131),(83,93),(83,114),(83,116),(83,120),(83,126),(84,94),(84,115),(84,116),(84,121),(84,127),(85,95),(85,114),(85,115),(85,122),(85,128),(86,93),(86,117),(86,119),(86,123),(86,129),(87,94),(87,118),(87,119),(87,124),(87,130),(88,95),(88,117),(88,118),(88,125),(88,131),(89,154),(89,155),(90,149),(90,154),(91,150),(91,154),(92,151),(92,154),(93,149),(93,155),(94,150),(94,155),(95,151),(95,155),(96,132),(96,156),(97,133),(97,156),(98,134),(98,156),(99,135),(99,156),(100,136),(100,156),(101,137),(101,156),(102,138),(102,156),(103,139),(103,156),(104,140),(104,156),(105,141),(105,156),(106,142),(106,156),(107,143),(107,156),(108,132),(108,135),(108,154),(109,133),(109,136),(109,154),(110,134),(110,137),(110,154),(111,138),(111,141),(111,154),(112,139),(112,142),(112,154),(113,140),(113,143),(113,154),(114,132),(114,138),(114,155),(115,133),(115,139),(115,155),(116,134),(116,140),(116,155),(117,135),(117,141),(117,155),(118,136),(118,142),(118,155),(119,137),(119,143),(119,155),(120,132),(120,134),(120,149),(121,133),(121,134),(121,150),(122,132),(122,133),(122,151),(123,135),(123,137),(123,149),(124,136),(124,137),(124,150),(125,135),(125,136),(125,151),(126,138),(126,140),(126,149),(127,139),(127,140),(127,150),(128,138),(128,139),(128,151),(129,141),(129,143),(129,149),(130,142),(130,143),(130,150),(131,141),(131,142),(131,151),(132,157),(133,157),(134,157),(135,157),(136,157),(137,157),(138,157),(139,157),(140,157),(141,157),(142,157),(143,157),(144,145),(144,146),(144,147),(144,148),(145,149),(145,156),(146,150),(146,156),(147,151),(147,156),(148,149),(148,150),(148,151),(149,157),(150,157),(151,157),(152,154),(152,156),(153,155),(153,156),(154,157),(155,157),(156,157)],158)
=> ?
=> ? = 6 + 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 6 + 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ?
=> ? = 6 + 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,24),(1,25),(1,26),(1,34),(2,10),(2,11),(2,12),(2,21),(2,22),(2,23),(2,33),(3,9),(3,12),(3,14),(3,30),(3,31),(3,32),(3,36),(4,9),(4,11),(4,13),(4,27),(4,28),(4,29),(4,35),(5,17),(5,19),(5,20),(5,23),(5,26),(5,29),(5,32),(6,16),(6,18),(6,20),(6,22),(6,25),(6,28),(6,31),(7,15),(7,18),(7,19),(7,21),(7,24),(7,27),(7,30),(8,15),(8,16),(8,17),(8,33),(8,34),(8,35),(8,36),(9,40),(9,41),(9,42),(9,60),(9,144),(10,37),(10,38),(10,39),(10,59),(10,144),(11,43),(11,47),(11,48),(11,49),(11,144),(12,44),(12,50),(12,51),(12,52),(12,144),(13,45),(13,53),(13,54),(13,55),(13,144),(14,46),(14,56),(14,57),(14,58),(14,144),(15,74),(15,75),(15,77),(15,80),(15,83),(15,86),(16,74),(16,76),(16,78),(16,81),(16,84),(16,87),(17,75),(17,76),(17,79),(17,82),(17,85),(17,88),(18,61),(18,64),(18,67),(18,70),(18,73),(18,74),(19,61),(19,62),(19,65),(19,68),(19,71),(19,75),(20,61),(20,63),(20,66),(20,69),(20,72),(20,76),(21,37),(21,47),(21,50),(21,62),(21,64),(21,77),(22,38),(22,48),(22,51),(22,63),(22,64),(22,78),(23,39),(23,49),(23,52),(23,62),(23,63),(23,79),(24,37),(24,53),(24,56),(24,65),(24,67),(24,80),(25,38),(25,54),(25,57),(25,66),(25,67),(25,81),(26,39),(26,55),(26,58),(26,65),(26,66),(26,82),(27,40),(27,47),(27,53),(27,68),(27,70),(27,83),(28,41),(28,48),(28,54),(28,69),(28,70),(28,84),(29,42),(29,49),(29,55),(29,68),(29,69),(29,85),(30,40),(30,50),(30,56),(30,71),(30,73),(30,86),(31,41),(31,51),(31,57),(31,72),(31,73),(31,87),(32,42),(32,52),(32,58),(32,71),(32,72),(32,88),(33,43),(33,44),(33,59),(33,77),(33,78),(33,79),(34,45),(34,46),(34,59),(34,80),(34,81),(34,82),(35,43),(35,45),(35,60),(35,83),(35,84),(35,85),(36,44),(36,46),(36,60),(36,86),(36,87),(36,88),(37,90),(37,145),(37,152),(38,91),(38,146),(38,152),(39,92),(39,147),(39,152),(40,93),(40,145),(40,153),(41,94),(41,146),(41,153),(42,95),(42,147),(42,153),(43,120),(43,121),(43,122),(43,148),(44,123),(44,124),(44,125),(44,148),(45,126),(45,127),(45,128),(45,148),(46,129),(46,130),(46,131),(46,148),(47,96),(47,98),(47,120),(47,145),(48,97),(48,98),(48,121),(48,146),(49,96),(49,97),(49,122),(49,147),(50,99),(50,101),(50,123),(50,145),(51,100),(51,101),(51,124),(51,146),(52,99),(52,100),(52,125),(52,147),(53,102),(53,104),(53,126),(53,145),(54,103),(54,104),(54,127),(54,146),(55,102),(55,103),(55,128),(55,147),(56,105),(56,107),(56,129),(56,145),(57,106),(57,107),(57,130),(57,146),(58,105),(58,106),(58,131),(58,147),(59,90),(59,91),(59,92),(59,148),(60,93),(60,94),(60,95),(60,148),(61,89),(61,152),(61,153),(62,96),(62,99),(62,108),(62,152),(63,97),(63,100),(63,109),(63,152),(64,98),(64,101),(64,110),(64,152),(65,102),(65,105),(65,111),(65,152),(66,103),(66,106),(66,112),(66,152),(67,104),(67,107),(67,113),(67,152),(68,96),(68,102),(68,114),(68,153),(69,97),(69,103),(69,115),(69,153),(70,98),(70,104),(70,116),(70,153),(71,99),(71,105),(71,117),(71,153),(72,100),(72,106),(72,118),(72,153),(73,101),(73,107),(73,119),(73,153),(74,89),(74,110),(74,113),(74,116),(74,119),(75,89),(75,108),(75,111),(75,114),(75,117),(76,89),(76,109),(76,112),(76,115),(76,118),(77,90),(77,108),(77,110),(77,120),(77,123),(78,91),(78,109),(78,110),(78,121),(78,124),(79,92),(79,108),(79,109),(79,122),(79,125),(80,90),(80,111),(80,113),(80,126),(80,129),(81,91),(81,112),(81,113),(81,127),(81,130),(82,92),(82,111),(82,112),(82,128),(82,131),(83,93),(83,114),(83,116),(83,120),(83,126),(84,94),(84,115),(84,116),(84,121),(84,127),(85,95),(85,114),(85,115),(85,122),(85,128),(86,93),(86,117),(86,119),(86,123),(86,129),(87,94),(87,118),(87,119),(87,124),(87,130),(88,95),(88,117),(88,118),(88,125),(88,131),(89,154),(89,155),(90,149),(90,154),(91,150),(91,154),(92,151),(92,154),(93,149),(93,155),(94,150),(94,155),(95,151),(95,155),(96,132),(96,156),(97,133),(97,156),(98,134),(98,156),(99,135),(99,156),(100,136),(100,156),(101,137),(101,156),(102,138),(102,156),(103,139),(103,156),(104,140),(104,156),(105,141),(105,156),(106,142),(106,156),(107,143),(107,156),(108,132),(108,135),(108,154),(109,133),(109,136),(109,154),(110,134),(110,137),(110,154),(111,138),(111,141),(111,154),(112,139),(112,142),(112,154),(113,140),(113,143),(113,154),(114,132),(114,138),(114,155),(115,133),(115,139),(115,155),(116,134),(116,140),(116,155),(117,135),(117,141),(117,155),(118,136),(118,142),(118,155),(119,137),(119,143),(119,155),(120,132),(120,134),(120,149),(121,133),(121,134),(121,150),(122,132),(122,133),(122,151),(123,135),(123,137),(123,149),(124,136),(124,137),(124,150),(125,135),(125,136),(125,151),(126,138),(126,140),(126,149),(127,139),(127,140),(127,150),(128,138),(128,139),(128,151),(129,141),(129,143),(129,149),(130,142),(130,143),(130,150),(131,141),(131,142),(131,151),(132,157),(133,157),(134,157),(135,157),(136,157),(137,157),(138,157),(139,157),(140,157),(141,157),(142,157),(143,157),(144,145),(144,146),(144,147),(144,148),(145,149),(145,156),(146,150),(146,156),(147,151),(147,156),(148,149),(148,150),(148,151),(149,157),(150,157),(151,157),(152,154),(152,156),(153,155),(153,156),(154,157),(155,157),(156,157)],158)
=> ?
=> ? = 6 + 1
Description
The number of minimal elements in a poset.
Matching statistic: St001271
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2)],3)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(2,3)],4)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],5)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,4)],5)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 1
([],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 0 + 1
([(4,5)],6)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
([(5,6)],7)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 0 + 1
([(4,6),(5,6)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 1
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 1
Description
The competition number of a graph.
The competition graph of a digraph $D$ is a (simple undirected) graph which has the same vertex set as $D$ and has an edge between $x$ and $y$ if and only if there exists a vertex $v$ in $D$ such that $(x, v)$ and $(y, v)$ are arcs of $D$. For any graph, $G$ together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ is the smallest number of such isolated vertices.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,2)],3)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(2,3)],4)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],5)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(3,4)],5)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 2
([],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(4,5)],6)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(3,5),(4,5)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
([(5,6)],7)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(4,6),(5,6)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(3,6),(4,5)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(3,6),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 2
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 6 + 2
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001651
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],1)
=> ? = 0
([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],3)
=> ([],1)
=> ? = 0
([(1,2)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([],4)
=> ([],1)
=> ? = 0
([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([],5)
=> ([],1)
=> ? = 0
([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 6
([],6)
=> ([],1)
=> ? = 0
([(4,5)],6)
=> ([(0,1)],2)
=> 0
([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,13),(1,17),(1,18),(1,19),(2,8),(2,9),(2,13),(2,14),(2,15),(2,16),(3,9),(3,11),(3,12),(3,23),(3,24),(3,25),(4,8),(4,10),(4,12),(4,20),(4,21),(4,22),(5,16),(5,19),(5,22),(5,25),(5,27),(5,28),(6,15),(6,18),(6,21),(6,24),(6,26),(6,28),(7,14),(7,17),(7,20),(7,23),(7,26),(7,27),(8,35),(8,36),(8,37),(8,72),(9,38),(9,39),(9,40),(9,72),(10,41),(10,42),(10,43),(10,72),(11,44),(11,45),(11,46),(11,72),(12,32),(12,33),(12,34),(12,72),(13,29),(13,30),(13,31),(13,72),(14,29),(14,35),(14,38),(14,48),(14,49),(15,30),(15,36),(15,39),(15,48),(15,50),(16,31),(16,37),(16,40),(16,49),(16,50),(17,29),(17,41),(17,44),(17,51),(17,52),(18,30),(18,42),(18,45),(18,51),(18,53),(19,31),(19,43),(19,46),(19,52),(19,53),(20,32),(20,35),(20,41),(20,54),(20,55),(21,33),(21,36),(21,42),(21,54),(21,56),(22,34),(22,37),(22,43),(22,55),(22,56),(23,32),(23,38),(23,44),(23,57),(23,58),(24,33),(24,39),(24,45),(24,57),(24,59),(25,34),(25,40),(25,46),(25,58),(25,59),(26,47),(26,48),(26,51),(26,54),(26,57),(27,47),(27,49),(27,52),(27,55),(27,58),(28,47),(28,50),(28,53),(28,56),(28,59),(29,73),(29,76),(30,74),(30,76),(31,75),(31,76),(32,73),(32,77),(33,74),(33,77),(34,75),(34,77),(35,60),(35,61),(35,73),(36,60),(36,62),(36,74),(37,61),(37,62),(37,75),(38,63),(38,64),(38,73),(39,63),(39,65),(39,74),(40,64),(40,65),(40,75),(41,66),(41,67),(41,73),(42,66),(42,68),(42,74),(43,67),(43,68),(43,75),(44,69),(44,70),(44,73),(45,69),(45,71),(45,74),(46,70),(46,71),(46,75),(47,76),(47,77),(48,60),(48,63),(48,76),(49,61),(49,64),(49,76),(50,62),(50,65),(50,76),(51,66),(51,69),(51,76),(52,67),(52,70),(52,76),(53,68),(53,71),(53,76),(54,60),(54,66),(54,77),(55,61),(55,67),(55,77),(56,62),(56,68),(56,77),(57,63),(57,69),(57,77),(58,64),(58,70),(58,77),(59,65),(59,71),(59,77),(60,78),(61,78),(62,78),(63,78),(64,78),(65,78),(66,78),(67,78),(68,78),(69,78),(70,78),(71,78),(72,73),(72,74),(72,75),(73,78),(74,78),(75,78),(76,78),(77,78)],79)
=> ? = 6
([(5,6)],7)
=> ([(0,1)],2)
=> 0
([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0
([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 6
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ? = 6
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ? = 6
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,24),(1,25),(1,26),(1,34),(2,10),(2,11),(2,12),(2,21),(2,22),(2,23),(2,33),(3,9),(3,12),(3,14),(3,30),(3,31),(3,32),(3,36),(4,9),(4,11),(4,13),(4,27),(4,28),(4,29),(4,35),(5,17),(5,19),(5,20),(5,23),(5,26),(5,29),(5,32),(6,16),(6,18),(6,20),(6,22),(6,25),(6,28),(6,31),(7,15),(7,18),(7,19),(7,21),(7,24),(7,27),(7,30),(8,15),(8,16),(8,17),(8,33),(8,34),(8,35),(8,36),(9,40),(9,41),(9,42),(9,60),(9,144),(10,37),(10,38),(10,39),(10,59),(10,144),(11,43),(11,47),(11,48),(11,49),(11,144),(12,44),(12,50),(12,51),(12,52),(12,144),(13,45),(13,53),(13,54),(13,55),(13,144),(14,46),(14,56),(14,57),(14,58),(14,144),(15,74),(15,75),(15,77),(15,80),(15,83),(15,86),(16,74),(16,76),(16,78),(16,81),(16,84),(16,87),(17,75),(17,76),(17,79),(17,82),(17,85),(17,88),(18,61),(18,64),(18,67),(18,70),(18,73),(18,74),(19,61),(19,62),(19,65),(19,68),(19,71),(19,75),(20,61),(20,63),(20,66),(20,69),(20,72),(20,76),(21,37),(21,47),(21,50),(21,62),(21,64),(21,77),(22,38),(22,48),(22,51),(22,63),(22,64),(22,78),(23,39),(23,49),(23,52),(23,62),(23,63),(23,79),(24,37),(24,53),(24,56),(24,65),(24,67),(24,80),(25,38),(25,54),(25,57),(25,66),(25,67),(25,81),(26,39),(26,55),(26,58),(26,65),(26,66),(26,82),(27,40),(27,47),(27,53),(27,68),(27,70),(27,83),(28,41),(28,48),(28,54),(28,69),(28,70),(28,84),(29,42),(29,49),(29,55),(29,68),(29,69),(29,85),(30,40),(30,50),(30,56),(30,71),(30,73),(30,86),(31,41),(31,51),(31,57),(31,72),(31,73),(31,87),(32,42),(32,52),(32,58),(32,71),(32,72),(32,88),(33,43),(33,44),(33,59),(33,77),(33,78),(33,79),(34,45),(34,46),(34,59),(34,80),(34,81),(34,82),(35,43),(35,45),(35,60),(35,83),(35,84),(35,85),(36,44),(36,46),(36,60),(36,86),(36,87),(36,88),(37,90),(37,145),(37,152),(38,91),(38,146),(38,152),(39,92),(39,147),(39,152),(40,93),(40,145),(40,153),(41,94),(41,146),(41,153),(42,95),(42,147),(42,153),(43,120),(43,121),(43,122),(43,148),(44,123),(44,124),(44,125),(44,148),(45,126),(45,127),(45,128),(45,148),(46,129),(46,130),(46,131),(46,148),(47,96),(47,98),(47,120),(47,145),(48,97),(48,98),(48,121),(48,146),(49,96),(49,97),(49,122),(49,147),(50,99),(50,101),(50,123),(50,145),(51,100),(51,101),(51,124),(51,146),(52,99),(52,100),(52,125),(52,147),(53,102),(53,104),(53,126),(53,145),(54,103),(54,104),(54,127),(54,146),(55,102),(55,103),(55,128),(55,147),(56,105),(56,107),(56,129),(56,145),(57,106),(57,107),(57,130),(57,146),(58,105),(58,106),(58,131),(58,147),(59,90),(59,91),(59,92),(59,148),(60,93),(60,94),(60,95),(60,148),(61,89),(61,152),(61,153),(62,96),(62,99),(62,108),(62,152),(63,97),(63,100),(63,109),(63,152),(64,98),(64,101),(64,110),(64,152),(65,102),(65,105),(65,111),(65,152),(66,103),(66,106),(66,112),(66,152),(67,104),(67,107),(67,113),(67,152),(68,96),(68,102),(68,114),(68,153),(69,97),(69,103),(69,115),(69,153),(70,98),(70,104),(70,116),(70,153),(71,99),(71,105),(71,117),(71,153),(72,100),(72,106),(72,118),(72,153),(73,101),(73,107),(73,119),(73,153),(74,89),(74,110),(74,113),(74,116),(74,119),(75,89),(75,108),(75,111),(75,114),(75,117),(76,89),(76,109),(76,112),(76,115),(76,118),(77,90),(77,108),(77,110),(77,120),(77,123),(78,91),(78,109),(78,110),(78,121),(78,124),(79,92),(79,108),(79,109),(79,122),(79,125),(80,90),(80,111),(80,113),(80,126),(80,129),(81,91),(81,112),(81,113),(81,127),(81,130),(82,92),(82,111),(82,112),(82,128),(82,131),(83,93),(83,114),(83,116),(83,120),(83,126),(84,94),(84,115),(84,116),(84,121),(84,127),(85,95),(85,114),(85,115),(85,122),(85,128),(86,93),(86,117),(86,119),(86,123),(86,129),(87,94),(87,118),(87,119),(87,124),(87,130),(88,95),(88,117),(88,118),(88,125),(88,131),(89,154),(89,155),(90,149),(90,154),(91,150),(91,154),(92,151),(92,154),(93,149),(93,155),(94,150),(94,155),(95,151),(95,155),(96,132),(96,156),(97,133),(97,156),(98,134),(98,156),(99,135),(99,156),(100,136),(100,156),(101,137),(101,156),(102,138),(102,156),(103,139),(103,156),(104,140),(104,156),(105,141),(105,156),(106,142),(106,156),(107,143),(107,156),(108,132),(108,135),(108,154),(109,133),(109,136),(109,154),(110,134),(110,137),(110,154),(111,138),(111,141),(111,154),(112,139),(112,142),(112,154),(113,140),(113,143),(113,154),(114,132),(114,138),(114,155),(115,133),(115,139),(115,155),(116,134),(116,140),(116,155),(117,135),(117,141),(117,155),(118,136),(118,142),(118,155),(119,137),(119,143),(119,155),(120,132),(120,134),(120,149),(121,133),(121,134),(121,150),(122,132),(122,133),(122,151),(123,135),(123,137),(123,149),(124,136),(124,137),(124,150),(125,135),(125,136),(125,151),(126,138),(126,140),(126,149),(127,139),(127,140),(127,150),(128,138),(128,139),(128,151),(129,141),(129,143),(129,149),(130,142),(130,143),(130,150),(131,141),(131,142),(131,151),(132,157),(133,157),(134,157),(135,157),(136,157),(137,157),(138,157),(139,157),(140,157),(141,157),(142,157),(143,157),(144,145),(144,146),(144,147),(144,148),(145,149),(145,156),(146,150),(146,156),(147,151),(147,156),(148,149),(148,150),(148,151),(149,157),(150,157),(151,157),(152,154),(152,156),(153,155),(153,156),(154,157),(155,157),(156,157)],158)
=> ? = 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ? = 6
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,24),(1,25),(1,26),(1,34),(2,10),(2,11),(2,12),(2,21),(2,22),(2,23),(2,33),(3,9),(3,12),(3,14),(3,30),(3,31),(3,32),(3,36),(4,9),(4,11),(4,13),(4,27),(4,28),(4,29),(4,35),(5,17),(5,19),(5,20),(5,23),(5,26),(5,29),(5,32),(6,16),(6,18),(6,20),(6,22),(6,25),(6,28),(6,31),(7,15),(7,18),(7,19),(7,21),(7,24),(7,27),(7,30),(8,15),(8,16),(8,17),(8,33),(8,34),(8,35),(8,36),(9,40),(9,41),(9,42),(9,60),(9,144),(10,37),(10,38),(10,39),(10,59),(10,144),(11,43),(11,47),(11,48),(11,49),(11,144),(12,44),(12,50),(12,51),(12,52),(12,144),(13,45),(13,53),(13,54),(13,55),(13,144),(14,46),(14,56),(14,57),(14,58),(14,144),(15,74),(15,75),(15,77),(15,80),(15,83),(15,86),(16,74),(16,76),(16,78),(16,81),(16,84),(16,87),(17,75),(17,76),(17,79),(17,82),(17,85),(17,88),(18,61),(18,64),(18,67),(18,70),(18,73),(18,74),(19,61),(19,62),(19,65),(19,68),(19,71),(19,75),(20,61),(20,63),(20,66),(20,69),(20,72),(20,76),(21,37),(21,47),(21,50),(21,62),(21,64),(21,77),(22,38),(22,48),(22,51),(22,63),(22,64),(22,78),(23,39),(23,49),(23,52),(23,62),(23,63),(23,79),(24,37),(24,53),(24,56),(24,65),(24,67),(24,80),(25,38),(25,54),(25,57),(25,66),(25,67),(25,81),(26,39),(26,55),(26,58),(26,65),(26,66),(26,82),(27,40),(27,47),(27,53),(27,68),(27,70),(27,83),(28,41),(28,48),(28,54),(28,69),(28,70),(28,84),(29,42),(29,49),(29,55),(29,68),(29,69),(29,85),(30,40),(30,50),(30,56),(30,71),(30,73),(30,86),(31,41),(31,51),(31,57),(31,72),(31,73),(31,87),(32,42),(32,52),(32,58),(32,71),(32,72),(32,88),(33,43),(33,44),(33,59),(33,77),(33,78),(33,79),(34,45),(34,46),(34,59),(34,80),(34,81),(34,82),(35,43),(35,45),(35,60),(35,83),(35,84),(35,85),(36,44),(36,46),(36,60),(36,86),(36,87),(36,88),(37,90),(37,145),(37,152),(38,91),(38,146),(38,152),(39,92),(39,147),(39,152),(40,93),(40,145),(40,153),(41,94),(41,146),(41,153),(42,95),(42,147),(42,153),(43,120),(43,121),(43,122),(43,148),(44,123),(44,124),(44,125),(44,148),(45,126),(45,127),(45,128),(45,148),(46,129),(46,130),(46,131),(46,148),(47,96),(47,98),(47,120),(47,145),(48,97),(48,98),(48,121),(48,146),(49,96),(49,97),(49,122),(49,147),(50,99),(50,101),(50,123),(50,145),(51,100),(51,101),(51,124),(51,146),(52,99),(52,100),(52,125),(52,147),(53,102),(53,104),(53,126),(53,145),(54,103),(54,104),(54,127),(54,146),(55,102),(55,103),(55,128),(55,147),(56,105),(56,107),(56,129),(56,145),(57,106),(57,107),(57,130),(57,146),(58,105),(58,106),(58,131),(58,147),(59,90),(59,91),(59,92),(59,148),(60,93),(60,94),(60,95),(60,148),(61,89),(61,152),(61,153),(62,96),(62,99),(62,108),(62,152),(63,97),(63,100),(63,109),(63,152),(64,98),(64,101),(64,110),(64,152),(65,102),(65,105),(65,111),(65,152),(66,103),(66,106),(66,112),(66,152),(67,104),(67,107),(67,113),(67,152),(68,96),(68,102),(68,114),(68,153),(69,97),(69,103),(69,115),(69,153),(70,98),(70,104),(70,116),(70,153),(71,99),(71,105),(71,117),(71,153),(72,100),(72,106),(72,118),(72,153),(73,101),(73,107),(73,119),(73,153),(74,89),(74,110),(74,113),(74,116),(74,119),(75,89),(75,108),(75,111),(75,114),(75,117),(76,89),(76,109),(76,112),(76,115),(76,118),(77,90),(77,108),(77,110),(77,120),(77,123),(78,91),(78,109),(78,110),(78,121),(78,124),(79,92),(79,108),(79,109),(79,122),(79,125),(80,90),(80,111),(80,113),(80,126),(80,129),(81,91),(81,112),(81,113),(81,127),(81,130),(82,92),(82,111),(82,112),(82,128),(82,131),(83,93),(83,114),(83,116),(83,120),(83,126),(84,94),(84,115),(84,116),(84,121),(84,127),(85,95),(85,114),(85,115),(85,122),(85,128),(86,93),(86,117),(86,119),(86,123),(86,129),(87,94),(87,118),(87,119),(87,124),(87,130),(88,95),(88,117),(88,118),(88,125),(88,131),(89,154),(89,155),(90,149),(90,154),(91,150),(91,154),(92,151),(92,154),(93,149),(93,155),(94,150),(94,155),(95,151),(95,155),(96,132),(96,156),(97,133),(97,156),(98,134),(98,156),(99,135),(99,156),(100,136),(100,156),(101,137),(101,156),(102,138),(102,156),(103,139),(103,156),(104,140),(104,156),(105,141),(105,156),(106,142),(106,156),(107,143),(107,156),(108,132),(108,135),(108,154),(109,133),(109,136),(109,154),(110,134),(110,137),(110,154),(111,138),(111,141),(111,154),(112,139),(112,142),(112,154),(113,140),(113,143),(113,154),(114,132),(114,138),(114,155),(115,133),(115,139),(115,155),(116,134),(116,140),(116,155),(117,135),(117,141),(117,155),(118,136),(118,142),(118,155),(119,137),(119,143),(119,155),(120,132),(120,134),(120,149),(121,133),(121,134),(121,150),(122,132),(122,133),(122,151),(123,135),(123,137),(123,149),(124,136),(124,137),(124,150),(125,135),(125,136),(125,151),(126,138),(126,140),(126,149),(127,139),(127,140),(127,150),(128,138),(128,139),(128,151),(129,141),(129,143),(129,149),(130,142),(130,143),(130,150),(131,141),(131,142),(131,151),(132,157),(133,157),(134,157),(135,157),(136,157),(137,157),(138,157),(139,157),(140,157),(141,157),(142,157),(143,157),(144,145),(144,146),(144,147),(144,148),(145,149),(145,156),(146,150),(146,156),(147,151),(147,156),(148,149),(148,150),(148,151),(149,157),(150,157),(151,157),(152,154),(152,156),(153,155),(153,156),(154,157),(155,157),(156,157)],158)
=> ? = 6
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 6
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,13),(1,14),(1,15),(1,16),(1,17),(1,18),(2,8),(2,9),(2,10),(2,11),(2,12),(2,18),(3,12),(3,17),(3,25),(3,26),(3,27),(3,28),(4,11),(4,16),(4,22),(4,23),(4,24),(4,28),(5,10),(5,15),(5,20),(5,21),(5,24),(5,27),(6,9),(6,14),(6,19),(6,21),(6,23),(6,26),(7,8),(7,13),(7,19),(7,20),(7,22),(7,25),(8,39),(8,40),(8,42),(8,45),(8,59),(9,39),(9,41),(9,43),(9,46),(9,60),(10,40),(10,41),(10,44),(10,47),(10,61),(11,42),(11,43),(11,44),(11,48),(11,62),(12,45),(12,46),(12,47),(12,48),(12,63),(13,49),(13,50),(13,52),(13,55),(13,59),(14,49),(14,51),(14,53),(14,56),(14,60),(15,50),(15,51),(15,54),(15,57),(15,61),(16,52),(16,53),(16,54),(16,58),(16,62),(17,55),(17,56),(17,57),(17,58),(17,63),(18,59),(18,60),(18,61),(18,62),(18,63),(19,29),(19,32),(19,35),(19,39),(19,49),(20,29),(20,30),(20,33),(20,40),(20,50),(21,29),(21,31),(21,34),(21,41),(21,51),(22,30),(22,32),(22,36),(22,42),(22,52),(23,31),(23,32),(23,37),(23,43),(23,53),(24,30),(24,31),(24,38),(24,44),(24,54),(25,33),(25,35),(25,36),(25,45),(25,55),(26,34),(26,35),(26,37),(26,46),(26,56),(27,33),(27,34),(27,38),(27,47),(27,57),(28,36),(28,37),(28,38),(28,48),(28,58),(29,64),(29,74),(29,104),(30,65),(30,75),(30,104),(31,66),(31,76),(31,104),(32,67),(32,77),(32,104),(33,68),(33,78),(33,104),(34,69),(34,79),(34,104),(35,70),(35,80),(35,104),(36,71),(36,81),(36,104),(37,72),(37,82),(37,104),(38,73),(38,83),(38,104),(39,64),(39,67),(39,70),(39,86),(40,64),(40,65),(40,68),(40,84),(41,64),(41,66),(41,69),(41,85),(42,65),(42,67),(42,71),(42,87),(43,66),(43,67),(43,72),(43,88),(44,65),(44,66),(44,73),(44,89),(45,68),(45,70),(45,71),(45,90),(46,69),(46,70),(46,72),(46,91),(47,68),(47,69),(47,73),(47,92),(48,71),(48,72),(48,73),(48,93),(49,74),(49,77),(49,80),(49,86),(50,74),(50,75),(50,78),(50,84),(51,74),(51,76),(51,79),(51,85),(52,75),(52,77),(52,81),(52,87),(53,76),(53,77),(53,82),(53,88),(54,75),(54,76),(54,83),(54,89),(55,78),(55,80),(55,81),(55,90),(56,79),(56,80),(56,82),(56,91),(57,78),(57,79),(57,83),(57,92),(58,81),(58,82),(58,83),(58,93),(59,84),(59,86),(59,87),(59,90),(60,85),(60,86),(60,88),(60,91),(61,84),(61,85),(61,89),(61,92),(62,87),(62,88),(62,89),(62,93),(63,90),(63,91),(63,92),(63,93),(64,103),(64,105),(65,100),(65,105),(66,101),(66,105),(67,102),(67,105),(68,94),(68,105),(69,95),(69,105),(70,96),(70,105),(71,97),(71,105),(72,98),(72,105),(73,99),(73,105),(74,103),(74,106),(75,100),(75,106),(76,101),(76,106),(77,102),(77,106),(78,94),(78,106),(79,95),(79,106),(80,96),(80,106),(81,97),(81,106),(82,98),(82,106),(83,99),(83,106),(84,94),(84,100),(84,103),(85,95),(85,101),(85,103),(86,96),(86,102),(86,103),(87,97),(87,100),(87,102),(88,98),(88,101),(88,102),(89,99),(89,100),(89,101),(90,94),(90,96),(90,97),(91,95),(91,96),(91,98),(92,94),(92,95),(92,99),(93,97),(93,98),(93,99),(94,107),(95,107),(96,107),(97,107),(98,107),(99,107),(100,107),(101,107),(102,107),(103,107),(104,105),(104,106),(105,107),(106,107)],108)
=> ? = 6
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,24),(1,25),(1,26),(1,34),(2,10),(2,11),(2,12),(2,21),(2,22),(2,23),(2,33),(3,9),(3,12),(3,14),(3,30),(3,31),(3,32),(3,36),(4,9),(4,11),(4,13),(4,27),(4,28),(4,29),(4,35),(5,17),(5,19),(5,20),(5,23),(5,26),(5,29),(5,32),(6,16),(6,18),(6,20),(6,22),(6,25),(6,28),(6,31),(7,15),(7,18),(7,19),(7,21),(7,24),(7,27),(7,30),(8,15),(8,16),(8,17),(8,33),(8,34),(8,35),(8,36),(9,40),(9,41),(9,42),(9,60),(9,144),(10,37),(10,38),(10,39),(10,59),(10,144),(11,43),(11,47),(11,48),(11,49),(11,144),(12,44),(12,50),(12,51),(12,52),(12,144),(13,45),(13,53),(13,54),(13,55),(13,144),(14,46),(14,56),(14,57),(14,58),(14,144),(15,74),(15,75),(15,77),(15,80),(15,83),(15,86),(16,74),(16,76),(16,78),(16,81),(16,84),(16,87),(17,75),(17,76),(17,79),(17,82),(17,85),(17,88),(18,61),(18,64),(18,67),(18,70),(18,73),(18,74),(19,61),(19,62),(19,65),(19,68),(19,71),(19,75),(20,61),(20,63),(20,66),(20,69),(20,72),(20,76),(21,37),(21,47),(21,50),(21,62),(21,64),(21,77),(22,38),(22,48),(22,51),(22,63),(22,64),(22,78),(23,39),(23,49),(23,52),(23,62),(23,63),(23,79),(24,37),(24,53),(24,56),(24,65),(24,67),(24,80),(25,38),(25,54),(25,57),(25,66),(25,67),(25,81),(26,39),(26,55),(26,58),(26,65),(26,66),(26,82),(27,40),(27,47),(27,53),(27,68),(27,70),(27,83),(28,41),(28,48),(28,54),(28,69),(28,70),(28,84),(29,42),(29,49),(29,55),(29,68),(29,69),(29,85),(30,40),(30,50),(30,56),(30,71),(30,73),(30,86),(31,41),(31,51),(31,57),(31,72),(31,73),(31,87),(32,42),(32,52),(32,58),(32,71),(32,72),(32,88),(33,43),(33,44),(33,59),(33,77),(33,78),(33,79),(34,45),(34,46),(34,59),(34,80),(34,81),(34,82),(35,43),(35,45),(35,60),(35,83),(35,84),(35,85),(36,44),(36,46),(36,60),(36,86),(36,87),(36,88),(37,90),(37,145),(37,152),(38,91),(38,146),(38,152),(39,92),(39,147),(39,152),(40,93),(40,145),(40,153),(41,94),(41,146),(41,153),(42,95),(42,147),(42,153),(43,120),(43,121),(43,122),(43,148),(44,123),(44,124),(44,125),(44,148),(45,126),(45,127),(45,128),(45,148),(46,129),(46,130),(46,131),(46,148),(47,96),(47,98),(47,120),(47,145),(48,97),(48,98),(48,121),(48,146),(49,96),(49,97),(49,122),(49,147),(50,99),(50,101),(50,123),(50,145),(51,100),(51,101),(51,124),(51,146),(52,99),(52,100),(52,125),(52,147),(53,102),(53,104),(53,126),(53,145),(54,103),(54,104),(54,127),(54,146),(55,102),(55,103),(55,128),(55,147),(56,105),(56,107),(56,129),(56,145),(57,106),(57,107),(57,130),(57,146),(58,105),(58,106),(58,131),(58,147),(59,90),(59,91),(59,92),(59,148),(60,93),(60,94),(60,95),(60,148),(61,89),(61,152),(61,153),(62,96),(62,99),(62,108),(62,152),(63,97),(63,100),(63,109),(63,152),(64,98),(64,101),(64,110),(64,152),(65,102),(65,105),(65,111),(65,152),(66,103),(66,106),(66,112),(66,152),(67,104),(67,107),(67,113),(67,152),(68,96),(68,102),(68,114),(68,153),(69,97),(69,103),(69,115),(69,153),(70,98),(70,104),(70,116),(70,153),(71,99),(71,105),(71,117),(71,153),(72,100),(72,106),(72,118),(72,153),(73,101),(73,107),(73,119),(73,153),(74,89),(74,110),(74,113),(74,116),(74,119),(75,89),(75,108),(75,111),(75,114),(75,117),(76,89),(76,109),(76,112),(76,115),(76,118),(77,90),(77,108),(77,110),(77,120),(77,123),(78,91),(78,109),(78,110),(78,121),(78,124),(79,92),(79,108),(79,109),(79,122),(79,125),(80,90),(80,111),(80,113),(80,126),(80,129),(81,91),(81,112),(81,113),(81,127),(81,130),(82,92),(82,111),(82,112),(82,128),(82,131),(83,93),(83,114),(83,116),(83,120),(83,126),(84,94),(84,115),(84,116),(84,121),(84,127),(85,95),(85,114),(85,115),(85,122),(85,128),(86,93),(86,117),(86,119),(86,123),(86,129),(87,94),(87,118),(87,119),(87,124),(87,130),(88,95),(88,117),(88,118),(88,125),(88,131),(89,154),(89,155),(90,149),(90,154),(91,150),(91,154),(92,151),(92,154),(93,149),(93,155),(94,150),(94,155),(95,151),(95,155),(96,132),(96,156),(97,133),(97,156),(98,134),(98,156),(99,135),(99,156),(100,136),(100,156),(101,137),(101,156),(102,138),(102,156),(103,139),(103,156),(104,140),(104,156),(105,141),(105,156),(106,142),(106,156),(107,143),(107,156),(108,132),(108,135),(108,154),(109,133),(109,136),(109,154),(110,134),(110,137),(110,154),(111,138),(111,141),(111,154),(112,139),(112,142),(112,154),(113,140),(113,143),(113,154),(114,132),(114,138),(114,155),(115,133),(115,139),(115,155),(116,134),(116,140),(116,155),(117,135),(117,141),(117,155),(118,136),(118,142),(118,155),(119,137),(119,143),(119,155),(120,132),(120,134),(120,149),(121,133),(121,134),(121,150),(122,132),(122,133),(122,151),(123,135),(123,137),(123,149),(124,136),(124,137),(124,150),(125,135),(125,136),(125,151),(126,138),(126,140),(126,149),(127,139),(127,140),(127,150),(128,138),(128,139),(128,151),(129,141),(129,143),(129,149),(130,142),(130,143),(130,150),(131,141),(131,142),(131,151),(132,157),(133,157),(134,157),(135,157),(136,157),(137,157),(138,157),(139,157),(140,157),(141,157),(142,157),(143,157),(144,145),(144,146),(144,147),(144,148),(145,149),(145,156),(146,150),(146,156),(147,151),(147,156),(148,149),(148,150),(148,151),(149,157),(150,157),(151,157),(152,154),(152,156),(153,155),(153,156),(154,157),(155,157),(156,157)],158)
=> ? = 6
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Matching statistic: St000455
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([(5,6)],7)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ?
=> ? = 0 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 0 - 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ?
=> ? = 0 - 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ?
=> ? = 6 - 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ?
=> ? = 0 - 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 0 - 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 6 - 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ?
=> ? = 6 - 1
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 6 - 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ?
=> ? = 0 - 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 0 - 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ? = 0 - 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ?
=> ? = 6 - 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 6 - 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ?
=> ? = 6 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
The following 317 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St000069The number of maximal elements of a poset. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000264The girth of a graph, which is not a tree. St001311The cyclomatic number of a graph. St000088The row sums of the character table of the symmetric group. St000321The number of integer partitions of n that are dominated by an integer partition. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000450The number of edges minus the number of vertices plus 2 of a graph. St000812The sum of the entries in the column specified by the partition of the change of basis matrix from complete homogeneous symmetric functions to monomial symmetric functions. St000935The number of ordered refinements of an integer partition. St001612The number of coloured multisets of cycles such that the multiplicities of colours are given by a partition. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St000008The major index of the composition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000537The cutwidth of a graph. St000637The length of the longest cycle in a graph. St001071The beta invariant of the graph. St001117The game chromatic index of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001541The Gini index of an integer partition. St001869The maximum cut size of a graph. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001956The comajor index for set-valued two-row standard Young tableaux. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000456The monochromatic index of a connected graph. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St001838The number of nonempty primitive factors of a binary word. St000511The number of invariant subsets when acting with a permutation of given cycle type. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St000879The number of long braid edges in the graph of braid moves of a permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000950Number of tilting modules of the corresponding LNakayama algebra, where a tilting module is a generalised tilting module of projective dimension 1. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001623The number of doubly irreducible elements of a lattice. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001703The villainy of a graph. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001624The breadth of a lattice. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001763The Hurwitz number of an integer partition. St001881The number of factors of a lattice as a Cartesian product of lattices. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001613The binary logarithm of the size of the center of a lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001621The number of atoms of a lattice. St001622The number of join-irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001616The number of neutral elements in a lattice. St001618The cardinality of the Frattini sublattice of a lattice. St001625The Möbius invariant of a lattice. St001679The number of subsets of a lattice whose meet is the bottom element. St001720The minimal length of a chain of small intervals in a lattice. St001754The number of tolerances of a finite lattice. St001833The number of linear intervals in a lattice. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001545The second Elser number of a connected graph. St001619The number of non-isomorphic sublattices of a lattice. St001620The number of sublattices of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St001473The absolute value of the sum of all entries of the Coxeter matrix of the corresponding LNakayama algebra. St000940The number of characters of the symmetric group whose value on the partition is zero. St000474Dyson's crank of a partition. St000681The Grundy value of Chomp on Ferrers diagrams. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St000976The sum of the positions of double up-steps of a Dyck path. St001281The normalized isoperimetric number of a graph. St000477The weight of a partition according to Alladi. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St000438The position of the last up step in a Dyck path. St000981The length of the longest zigzag subpath. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000623The number of occurrences of the pattern 52341 in a permutation. St000787The number of flips required to make a perfect matching noncrossing. St001381The fertility of a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001549The number of restricted non-inversions between exceedances. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001850The number of Hecke atoms of a permutation. St000056The decomposition (or block) number of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000694The number of affine bounded permutations that project to a given permutation. St000788The number of nesting-similar perfect matchings of a perfect matching. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001461The number of topologically connected components of the chord diagram of a permutation. St001590The crossing number of a perfect matching. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001592The maximal number of simple paths between any two different vertices of a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000475The number of parts equal to 1 in a partition. St000929The constant term of the character polynomial of an integer partition. St000480The number of lower covers of a partition in dominance order. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001890The maximum magnitude of the Möbius function of a poset. St001175The size of a partition minus the hook length of the base cell. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001118The acyclic chromatic index of a graph. St000464The Schultz index of a connected graph. St001305The number of induced cycles on four vertices in a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001479The number of bridges of a graph. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001363The Euler characteristic of a graph according to Knill. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001877Number of indecomposable injective modules with projective dimension 2. St001570The minimal number of edges to add to make a graph Hamiltonian. St000256The number of parts from which one can substract 2 and still get an integer partition. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St001793The difference between the clique number and the chromatic number of a graph. St000544The cop number of a graph. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001490The number of connected components of a skew partition. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001095The number of non-isomorphic posets with precisely one further covering relation. St001307The number of induced stars on four vertices in a graph. St000914The sum of the values of the Möbius function of a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000322The skewness of a graph. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001578The minimal number of edges to add or remove to make a graph a line graph. St000287The number of connected components of a graph. St001487The number of inner corners of a skew partition. St001518The number of graphs with the same ordinary spectrum as the given graph. St001765The number of connected components of the friends and strangers graph. St001060The distinguishing index of a graph. St001875The number of simple modules with projective dimension at most 1. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001571The Cartan determinant of the integer partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001780The order of promotion on the set of standard tableaux of given shape. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000137The Grundy value of an integer partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001383The BG-rank of an integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001657The number of twos in an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000447The number of pairs of vertices of a graph with distance 3. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001527The cyclic permutation representation number of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!