searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000318
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000318: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000318: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> []
=> 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> []
=> 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> []
=> 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> []
=> 1
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> []
=> 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> []
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> []
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> []
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> []
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> []
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> []
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> []
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> []
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> []
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> []
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> []
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> []
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> []
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> []
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> []
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> []
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> []
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> []
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> []
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> []
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1]
=> 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> []
=> 1
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Matching statistic: St000159
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000159: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000159: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> []
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> []
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> []
=> 0 = 1 - 1
Description
The number of distinct parts of the integer partition.
This statistic is also the number of removeable cells of the partition, and the number of valleys of the Dyck path tracing the shape of the partition.
Matching statistic: St000340
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[8,8,8],[7,7]]
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
Description
The number of non-final maximal constant sub-paths of length greater than one.
This is the total number of occurrences of the patterns 110 and 001.
Matching statistic: St001124
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001124: Integer partitions ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 75%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001124: Integer partitions ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 75%
Values
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> ? = 2 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> []
=> ? = 1 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1]
=> ? = 2 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> []
=> ? = 1 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> []
=> ? = 1 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> ? = 2 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> [1]
=> []
=> ? = 1 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1 = 3 - 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[4,4,3],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 0 = 2 - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [[4,4,4],[3,2]]
=> [3,2]
=> [2]
=> 0 = 2 - 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 2 - 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1 = 3 - 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0 = 2 - 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 0 = 2 - 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 3 - 2
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> 1 = 3 - 2
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1 = 3 - 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 1 = 3 - 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[4,4,4,2],[3,3,1]]
=> [3,3,1]
=> [3,1]
=> 1 = 3 - 2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[4,4,4,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> [2,2,2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [[4,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [[4,4,3,3],[3,2,2]]
=> [3,2,2]
=> [2,2]
=> 0 = 2 - 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [[5,3,3],[2,2]]
=> [2,2]
=> [2]
=> 0 = 2 - 2
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity gλμ,ν of the Specht module Sλ in Sμ⊗Sν:
Sμ⊗Sν=⨁λgλμ,νSλ
This statistic records the Kronecker coefficient g(n−1)1λ,λ, for λ⊢n>1. For n≤1 the statistic is undefined.
It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than [[St000159]], the number of distinct parts of the partition.
Matching statistic: St001737
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St001737: Permutations ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 75%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St001737: Permutations ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 75%
Values
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => [3,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [2,4,3,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,2,4,1] => 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,2,1,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [4,2,3,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,4,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [2,3,5,4,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [2,4,3,1,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [2,5,3,4,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [2,5,3,1,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [2,4,5,3,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [3,2,4,5,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [3,2,4,1,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [3,2,5,4,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [3,2,1,4,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [3,2,5,1,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,2,3,5,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,2,3,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [5,2,3,4,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,1,3,5] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,2,5,1,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,1,3,4] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,4,2,5,1] => 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,4,2,1,5] => 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,2,1,4] => 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [3,4,5,2,1] => 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,5,2,3,1] => 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [4,5,2,1,3] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => [2,3,4,6,5,1] => 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [2,3,5,4,6,1] => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [2,3,5,4,1,6] => 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [2,3,6,4,5,1] => 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => [2,3,6,4,1,5] => 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,5,3,4,6] => [2,3,5,6,4,1] => 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [2,4,3,5,6,1] => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [2,4,3,5,1,6] => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [2,4,3,6,5,1] => 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => [2,4,3,1,5,6] => 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,5] => [2,4,3,6,1,5] => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [2,5,3,4,6,1] => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => [2,5,3,4,1,6] => 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [2,6,3,4,5,1] => 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => [2,6,3,4,1,5] => 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [2,5,3,6,4,1] => 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => [2,5,3,1,4,6] => 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => [2,3,4,6,5,7,1] => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => [2,3,4,7,5,6,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => [2,3,5,4,6,7,1] => ? = 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => [2,3,5,4,7,6,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,7,5] => [2,3,5,4,1,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,3,6,7] => [2,3,6,4,5,7,1] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,3,7,6] => [2,3,6,4,5,1,7] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,3,7] => [2,3,7,4,5,6,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [2,4,3,5,6,7,1] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,4,6,5,7] => [2,4,3,5,7,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,2,4,6,7,5] => [2,4,3,5,1,6,7] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,5,4,6,7] => [2,4,3,6,5,7,1] => ? = 3
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6] => [2,4,3,6,5,1,7] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,6,4,7] => [2,4,3,7,5,6,1] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,6,7,4] => [2,4,3,1,5,6,7] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,4,2,5,6,7] => [2,5,3,4,6,7,1] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,3,4,2,5,7,6] => [2,5,3,4,6,1,7] => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5,7] => [2,5,3,4,7,6,1] => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,3,4,2,6,7,5] => [2,5,3,4,1,6,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,4,5,2,6,7] => [2,6,3,4,5,7,1] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,4,5,2,7,6] => [2,6,3,4,5,1,7] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,2,7] => [2,7,3,4,5,6,1] => ? = 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,3,6,7,2,4,5] => [2,6,3,7,1,4,5] => ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,6,2,7,3,5] => [2,5,7,3,1,4,6] => ? = 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,4,5,7,2,3,6] => [2,6,7,3,4,1,5] => ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,6,7,2,3,5] => [2,6,7,3,1,4,5] => ? = 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,5,7,2,3,4,6] => [2,5,6,7,3,1,4] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [3,2,4,5,6,7,1] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => [3,2,4,5,6,1,7] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => [3,2,4,5,7,6,1] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => [3,2,4,5,1,6,7] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => [3,2,4,6,5,7,1] => ? = 3
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => [3,2,4,6,5,1,7] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => [3,2,4,7,5,6,1] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,3,5,6,7,4] => [3,2,4,1,5,6,7] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => [3,2,5,4,6,7,1] => ? = 3
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => [3,2,5,4,6,1,7] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [3,2,5,4,7,6,1] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [3,2,5,4,1,6,7] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => [3,2,6,4,5,7,1] => ? = 3
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [3,2,6,4,5,1,7] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => [3,2,7,4,5,6,1] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => [3,2,1,4,5,6,7] => ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,1,6,7,3,4,5] => [3,2,6,7,1,4,5] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [4,2,3,5,6,7,1] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => [4,2,3,5,6,1,7] => ? = 2
Description
The number of descents of type 2 in a permutation.
A position i∈[1,n−1] is a descent of type 2 of a permutation π of n letters, if it is a descent and if π(j)<π(i) for all j<i.
Matching statistic: St001194
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001194: Dyck paths ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 50%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001194: Dyck paths ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
Description
The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!