Your data matches 150 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000370
Mp00154: Graphs coreGraphs
Mp00147: Graphs squareGraphs
St000370: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
Description
The genus of a graph. This is the smallest genus of an oriented surface on which the graph can be embedded without crossings. One can indeed compute the genus as the sum of the genuses for the connected components.
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St000205: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 0
([],2)
=> ([],1)
=> [1]
=> [1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([],3)
=> ([],1)
=> [1]
=> [1]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([],4)
=> ([],1)
=> [1]
=> [1]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([],5)
=> ([],1)
=> [1]
=> [1]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [2,2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St000206: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 0
([],2)
=> ([],1)
=> [1]
=> [1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([],3)
=> ([],1)
=> [1]
=> [1]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([],4)
=> ([],1)
=> [1]
=> [1]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([],5)
=> ([],1)
=> [1]
=> [1]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [2,2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex. See also [[St000205]]. Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St001714
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St001714: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 0
([],2)
=> ([],1)
=> [1]
=> [1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([],3)
=> ([],1)
=> [1]
=> [1]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([],4)
=> ([],1)
=> [1]
=> [1]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([],5)
=> ([],1)
=> [1]
=> [1]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [2,2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 0
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. In particular, partitions with statistic $0$ are wide partitions.
Matching statistic: St000621
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St000621: Integer partitions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> ? = 0 + 1
([],2)
=> ([],1)
=> [1]
=> [1]
=> ? = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([],3)
=> ([],1)
=> [1]
=> [1]
=> ? = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([],4)
=> ([],1)
=> [1]
=> [1]
=> ? = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 1 = 0 + 1
([],5)
=> ([],1)
=> [1]
=> [1]
=> ? = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [2,2,1]
=> 2 = 1 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [2,2,1]
=> 2 = 1 + 1
([],6)
=> ([],1)
=> [1]
=> [1]
=> ? = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [2]
=> 1 = 0 + 1
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is even. This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1]. The case of an odd minimum is [[St000620]].
Matching statistic: St001335
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St001335: Graphs ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> 0
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? = 1
Description
The cardinality of a minimal cycle-isolating set of a graph. Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$. This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains all cycles.
Mp00154: Graphs coreGraphs
Mp00203: Graphs coneGraphs
St001703: Graphs ⟶ ℤResult quality: 50% values known / values provided: 94%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The villainy of a graph. The villainy of a permutation of a proper coloring $c$ of a graph is the minimal Hamming distance between $c$ and a proper coloring. The villainy of a graph is the maximal villainy of a permutation of a proper coloring.
Mp00154: Graphs coreGraphs
Mp00203: Graphs coneGraphs
St001738: Graphs ⟶ ℤResult quality: 50% values known / values provided: 94%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
Description
The minimal order of a graph which is not an induced subgraph of the given graph. For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices. By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number [[St000097]].
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001001: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 94%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([],2)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([],3)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([],4)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([],5)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
Description
The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001314: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 94%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([],2)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([],3)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([],4)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([],5)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
Description
The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra.
The following 140 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001793The difference between the clique number and the chromatic number of a graph. St000917The open packing number of a graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000671The maximin edge-connectivity for choosing a subgraph. St001071The beta invariant of the graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001572The minimal number of edges to remove to make a graph bipartite. St001638The book thickness of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001736The total number of cycles in a graph. St001797The number of overfull subgraphs of a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001716The 1-improper chromatic number of a graph. St001957The number of Hasse diagrams with a given underlying undirected graph. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001881The number of factors of a lattice as a Cartesian product of lattices. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000379The number of Hamiltonian cycles in a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001877Number of indecomposable injective modules with projective dimension 2. St000273The domination number of a graph. St000544The cop number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001829The common independence number of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000264The girth of a graph, which is not a tree. St001890The maximum magnitude of the Möbius function of a poset. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001570The minimal number of edges to add to make a graph Hamiltonian. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001651The Frankl number of a lattice. St000069The number of maximal elements of a poset. St001845The number of join irreducibles minus the rank of a lattice. St000879The number of long braid edges in the graph of braid moves of a permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000488The number of cycles of a permutation of length at most 2. St000623The number of occurrences of the pattern 52341 in a permutation. St000666The number of right tethers of a permutation. St000787The number of flips required to make a perfect matching noncrossing. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001381The fertility of a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001549The number of restricted non-inversions between exceedances. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001850The number of Hecke atoms of a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000056The decomposition (or block) number of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000694The number of affine bounded permutations that project to a given permutation. St000788The number of nesting-similar perfect matchings of a perfect matching. St001081The number of minimal length factorizations of a permutation into star transpositions. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001256Number of simple reflexive modules that are 2-stable reflexive. St001461The number of topologically connected components of the chord diagram of a permutation. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001590The crossing number of a perfect matching. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St000068The number of minimal elements in a poset. St001367The smallest number which does not occur as degree of a vertex in a graph. St001479The number of bridges of a graph. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001333The cardinality of a minimal edge-isolating set of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001363The Euler characteristic of a graph according to Knill. St001496The number of graphs with the same Laplacian spectrum as the given graph. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001060The distinguishing index of a graph. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001301The first Betti number of the order complex associated with the poset. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St000618The number of self-evacuating tableaux of given shape. St000781The number of proper colouring schemes of a Ferrers diagram. St001432The order dimension of the partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph.