searching the database
Your data matches 43 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000371
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000371: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => 0
[1,0,1,0]
=> [3,1,2] => 0
[1,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 1
Description
The number of mid points of decreasing subsequences of length 3 in a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also [[St000119]].
Matching statistic: St000373
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000373: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000373: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => 0
[1,0,1,0]
=> [3,1,2] => 0
[1,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 1
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$.
Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j \geq j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$.
See also [[St000213]] and [[St000119]].
Matching statistic: St001089
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
St001089: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 0
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 0
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ? = 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 4
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> ? = 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 4
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 4
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
Description
Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
Matching statistic: St000372
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000372: Permutations ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 80%
Mp00069: Permutations —complement⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
St000372: Permutations ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => [1,2] => [1] => 0
[1,0,1,0]
=> [3,1,2] => [1,3,2] => [1,2] => 0
[1,1,0,0]
=> [2,3,1] => [2,1,3] => [2,1] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => [1,3,2] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,2,4,3] => [1,2,3] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,4,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => [2,4,1,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [3,1,4,2] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [3,2,1,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [4,1,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [4,2,1,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,5,4,2] => [1,3,4,2] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,4,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [2,3,5,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [4,3,1,2] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,2,5,3] => [4,1,2,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,3,2,5,4] => [1,3,2,4] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,6,5,4,3,2] => [1,5,4,3,2] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,6,5,4,1,3] => [2,5,4,1,3] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [3,6,5,1,4,2] => [3,5,1,4,2] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,5,2,4,3] => [1,5,2,4,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [3,6,5,2,1,4] => [3,5,2,1,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,6,1,5,3,2] => [4,1,5,3,2] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,6,2,5,1,3] => [4,2,5,1,3] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,6,3,5,4,2] => [1,3,5,4,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,6,2,5,4,3] => [1,2,5,4,3] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,6,3,5,1,4] => [2,3,5,1,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [4,6,3,1,5,2] => [4,3,1,5,2] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [4,6,1,2,5,3] => [4,1,2,5,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,6,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [4,6,3,2,1,5] => [4,3,2,1,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [5,1,6,4,3,2] => [5,1,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [5,2,6,4,1,3] => [5,2,4,1,3] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [5,3,6,1,4,2] => [5,3,1,4,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,1,6,2,4,3] => [5,1,2,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [5,3,6,2,1,4] => [5,3,2,1,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,4,6,5,3,2] => [1,4,5,3,2] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [2,4,6,5,1,3] => [2,4,5,1,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,3,6,5,4,2] => [1,3,5,4,2] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [2,1,6,5,4,3] => [2,1,5,4,3] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [2,3,6,5,1,4] => [2,3,5,1,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,4,6,1,5,2] => [3,4,1,5,2] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,4,6,2,5,3] => [1,4,2,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,3,6,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,4,6,2,1,5] => [3,4,2,1,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => [1,8,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => [2,8,7,6,5,4,1,3] => [2,7,6,5,4,1,3] => ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [8,1,2,7,6,3,4,5] => [1,8,7,2,3,6,5,4] => ? => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => [6,8,4,7,2,5,1,3] => [6,4,7,2,5,1,3] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,1,8,2,3,4,5,7] => [3,8,1,7,6,5,4,2] => [3,1,7,6,5,4,2] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,1,4,2,6,3,5,7] => [1,8,5,7,3,6,4,2] => [1,5,7,3,6,4,2] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => [7,1,8,6,5,4,3,2] => [7,1,6,5,4,3,2] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,3,1,2,4,5,6,7] => [1,6,8,7,5,4,3,2] => [1,6,7,5,4,3,2] => ? = 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [8,3,1,2,4,7,5,6] => [1,6,8,7,5,2,4,3] => [1,6,7,5,2,4,3] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => [1,5,8,7,6,4,3,2] => [1,5,7,6,4,3,2] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => [1,2,8,7,6,5,4,3] => ? => ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [8,3,1,5,6,2,4,7] => [1,6,8,4,3,7,5,2] => [1,6,4,3,7,5,2] => ? = 3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [2,6,7,1,3,4,8,5] => [7,3,2,8,6,5,1,4] => [7,3,2,6,5,1,4] => ? = 0
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [6,3,8,1,2,7,4,5] => [3,6,1,8,7,2,5,4] => [3,6,1,7,2,5,4] => ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => [3,2,1,8,7,6,5,4] => [3,2,1,7,6,5,4] => ? = 0
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,8,4,1,6,2,3,5] => [2,1,5,8,3,7,6,4] => [2,1,5,3,7,6,4] => ? = 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [8,3,4,1,6,7,2,5] => [1,6,5,8,3,2,7,4] => [1,6,5,3,2,7,4] => ? = 4
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [2,7,6,5,1,3,8,4] => [7,2,3,4,8,6,1,5] => ? => ? = 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [8,3,6,5,1,7,2,4] => [1,6,3,4,8,2,7,5] => ? => ? = 4
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [8,7,4,5,6,1,2,3] => [1,2,5,4,3,8,7,6] => ? => ? = 4
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => [7,6,5,4,3,1,8,2] => ? => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [7,6,5,4,3,2,1,8] => [7,6,5,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [1,9,8,7,6,5,4,3,2] => [1,8,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,1,2,3,4,5,6,9,7] => [2,9,8,7,6,5,4,1,3] => ? => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => [8,1,9,7,6,5,4,3,2] => ? => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [9,3,1,2,4,5,6,7,8] => [1,7,9,8,6,5,4,3,2] => [1,7,8,6,5,4,3,2] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,9,1,2,3,4,5,6,7] => [2,1,9,8,7,6,5,4,3] => ? => ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [9,7,8,1,2,3,4,5,6] => [1,3,2,9,8,7,6,5,4] => ? => ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => [8,7,6,5,4,3,1,9,2] => ? => ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => [8,7,6,5,4,3,2,1,9] => [8,7,6,5,4,3,2,1] => ? = 0
[]
=> [1] => [1] => [] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [10,9,1,2,3,4,5,6,7,8] => [1,2,10,9,8,7,6,5,4,3] => ? => ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [10,9,8,1,2,3,4,5,6,7] => [1,2,3,10,9,8,7,6,5,4] => ? => ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [7,8,9,10,1,2,3,4,5,6] => [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,9,8,7,6,5] => ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => [9,8,7,6,5,4,3,2,1,10] => [9,8,7,6,5,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => [1,10,9,8,7,6,5,4,3,2] => [1,9,8,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [9,1,2,3,4,5,6,7,10,8] => [2,10,9,8,7,6,5,4,1,3] => ? => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => [1,11,10,9,8,7,6,5,4,3,2] => [1,10,9,8,7,6,5,4,3,2] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,10,1,3,4,5,6,7,8,9] => [9,1,10,8,7,6,5,4,3,2] => ? => ? = 0
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1] => ? = 0
Description
The number of mid points of increasing subsequences of length 3 in a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) < \pi(j) < \pi(k)$.
The generating function is given by [1].
Matching statistic: St001687
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St001687: Permutations ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 80%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St001687: Permutations ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => [2,1] => [1,2] => 0
[1,0,1,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0
[1,1,0,0]
=> [2,3,1] => [3,2,1] => [1,2,3] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => [1,4,3,2] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => [1,2,4,3] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => [1,3,4,2] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,1,4,2] => [2,4,1,3] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => [1,5,4,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,4,1,2,3] => [1,2,5,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => [1,3,5,4,2] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,1,2,5,3] => [2,5,4,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,4,5,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => [1,2,4,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,5,2,4] => [3,5,1,4,2] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,1,5,2,3] => [2,5,1,4,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,1,5,4,2] => [3,5,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => [1,3,4,5,2] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,1,5,3] => [2,4,5,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,3,1,5,2] => [2,3,5,1,4] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => [1,6,5,4,3,2] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,5,1,2,3,4] => [1,2,6,5,4,3] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,4,1,2,3,5] => [1,3,6,5,4,2] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,2,3,6,4] => [2,6,5,4,1,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,5,4,1,2,3] => [1,2,3,6,5,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => [1,4,6,5,3,2] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,5,3,1,2,4] => [1,2,4,6,5,3] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,2,6,3,5] => [3,6,5,1,4,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,1,2,6,3,4] => [2,6,5,1,4,3] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,1,2,6,5,3] => [3,6,5,1,2,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,4,3,1,2,5] => [1,3,4,6,5,2] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => [2,4,6,5,1,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,4,1,2,6,3] => [2,3,6,5,1,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,5,4,3,1,2] => [1,2,3,4,6,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => [1,5,6,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,5,2,1,3,4] => [1,2,5,6,4,3] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,4,2,1,3,5] => [1,3,5,6,4,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,1,3,6,4] => [2,5,6,4,1,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,5,4,2,1,3] => [1,2,3,5,6,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,1,6,2,4,5] => [4,6,1,5,3,2] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => [4,6,1,2,5,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,6,2,3,5] => [3,6,1,5,4,2] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,1,5,2,3,4] => [1,6,2,5,4,3] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,1,6,5,2,3] => [3,6,1,2,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,1,6,4,2,5] => [4,6,1,3,5,2] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,5,2,6,4] => [4,6,2,5,1,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,4,1,6,2,3] => [2,3,6,1,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,1,6,5,4,2] => [4,6,1,2,3,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [7,2,1,3,4,5,6] => [1,6,7,5,4,3,2] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,1,7,2,4,5,6] => [5,7,1,6,4,3,2] => ? = 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [4,1,7,2,3,5,6] => [4,7,1,6,5,3,2] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [6,1,7,2,3,4,5] => [2,7,1,6,5,4,3] => ? = 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [7,2,1,6,3,4,5] => [1,6,7,2,5,4,3] => ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [7,3,4,1,2,5,6] => [4,3,1,7,2,5,6] => [4,5,7,1,6,3,2] => ? = 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,4,1,6,2,7,3] => [3,4,7,2,6,1,5] => ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => [8,1,2,3,4,5,6,7] => [1,8,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => [8,7,1,2,3,4,5,6] => [1,2,8,7,6,5,4,3] => ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [8,1,2,7,6,3,4,5] => [6,1,2,3,7,4,8,5] => [3,8,7,6,2,5,1,4] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => [8,7,5,3,1,2,4,6] => [1,2,4,6,8,7,5,3] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,1,8,2,3,4,5,7] => [8,1,2,6,3,4,5,7] => [1,8,7,3,6,5,4,2] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,1,4,2,6,3,5,7] => [4,1,2,6,3,8,5,7] => [5,8,7,3,6,1,4,2] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => [8,2,1,3,4,5,6,7] => [1,7,8,6,5,4,3,2] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,3,1,2,4,5,6,7] => [3,1,8,2,4,5,6,7] => [6,8,1,7,5,4,3,2] => ? = 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [8,3,1,2,4,7,5,6] => [3,1,7,2,4,5,8,6] => [6,8,2,7,5,4,1,3] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => [4,1,8,2,3,5,6,7] => [5,8,1,7,6,4,3,2] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => [7,1,8,2,3,4,5,6] => [2,8,1,7,6,5,4,3] => ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [8,3,1,5,6,2,4,7] => [3,1,6,5,2,8,4,7] => [6,8,3,4,7,1,5,2] => ? = 3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [2,6,7,1,3,4,8,5] => [8,7,2,1,6,3,4,5] => [1,2,7,8,3,6,5,4] => ? = 0
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [6,3,8,1,2,7,4,5] => [7,3,1,8,6,2,4,5] => [2,6,8,1,3,7,5,4] => ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => [8,1,7,2,6,3,4,5] => [1,8,2,7,3,6,5,4] => ? = 0
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,8,4,1,6,2,3,5] => [4,1,6,2,8,3,7,5] => [5,8,3,7,1,6,2,4] => ? = 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [8,3,4,1,6,7,2,5] => [4,3,1,7,6,2,8,5] => [5,6,8,2,3,7,1,4] => ? = 4
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [2,7,6,5,1,3,8,4] => [5,2,1,6,3,8,7,4] => [4,7,8,3,6,1,2,5] => ? = 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [8,3,6,5,1,7,2,4] => [5,3,1,7,6,2,8,4] => [4,6,8,2,3,7,1,5] => ? = 4
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [8,7,4,5,6,1,2,3] => [6,5,4,1,7,2,8,3] => [3,4,5,8,2,7,1,6] => ? = 4
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => [8,6,5,4,3,2,1,7] => [1,3,4,5,6,7,8,2] => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [9,1,2,3,4,5,6,7,8] => [1,9,8,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,1,2,3,4,5,6,9,7] => [9,8,1,2,3,4,5,6,7] => [1,2,9,8,7,6,5,4,3] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => [9,2,1,3,4,5,6,7,8] => [1,8,9,7,6,5,4,3,2] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [9,3,1,2,4,5,6,7,8] => [3,1,9,2,4,5,6,7,8] => [7,9,1,8,6,5,4,3,2] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,9,1,2,3,4,5,6,7] => [9,1,8,2,3,4,5,6,7] => [1,9,2,8,7,6,5,4,3] => ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [9,7,8,1,2,3,4,5,6] => [8,1,7,2,9,3,4,5,6] => [2,9,3,8,1,7,6,5,4] => ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => [9,7,6,5,4,3,2,1,8] => [1,3,4,5,6,7,8,9,2] => ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => [9,8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [10,9,1,2,3,4,5,6,7,8] => [9,1,10,2,3,4,5,6,7,8] => [2,10,1,9,8,7,6,5,4,3] => ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [10,9,8,1,2,3,4,5,6,7] => [8,1,9,2,10,3,4,5,6,7] => [3,10,2,9,1,8,7,6,5,4] => ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [7,8,9,10,1,2,3,4,5,6] => [10,1,9,2,8,3,7,4,5,6] => [1,10,2,9,3,8,4,7,6,5] => ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => [10,9,8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9,10] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => [10,1,2,3,4,5,6,7,8,9] => [1,10,9,8,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [9,1,2,3,4,5,6,7,10,8] => [10,9,1,2,3,4,5,6,7,8] => [1,2,10,9,8,7,6,5,4,3] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => [11,1,2,3,4,5,6,7,8,9,10] => [1,11,10,9,8,7,6,5,4,3,2] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,10,1,3,4,5,6,7,8,9] => [10,2,1,3,4,5,6,7,8,9] => [1,9,10,8,7,6,5,4,3,2] => ? = 0
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => [11,10,9,8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9,10,11] => ? = 0
Description
The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation.
Matching statistic: St001876
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 40% ●values known / values provided: 57%●distinct values known / distinct values provided: 40%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 40% ●values known / values provided: 57%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,9),(2,15),(3,14),(4,11),(5,13),(6,7),(6,14),(7,5),(7,10),(8,1),(9,3),(9,6),(10,13),(10,15),(11,8),(12,11),(13,12),(14,2),(14,10),(15,4),(15,12)],16)
=> ? = 0
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,9),(2,8),(3,2),(3,7),(4,1),(4,7),(5,6),(6,3),(6,4),(7,8),(7,9),(8,10),(9,10)],11)
=> ?
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ?
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ?
=> ? = 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> ?
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,8),(3,7),(4,9),(5,9),(6,1),(6,7),(7,8),(8,2),(9,3),(9,6)],10)
=> ?
=> ? = 3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 0
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ?
=> ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 0
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,9),(2,8),(3,10),(4,11),(5,3),(5,13),(6,4),(6,13),(8,7),(9,7),(10,2),(10,12),(11,1),(11,12),(12,8),(12,9),(13,10),(13,11)],14)
=> ?
=> ? = 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,6),(1,10),(2,9),(3,8),(4,7),(5,2),(5,8),(6,1),(6,7),(7,10),(8,9),(10,3),(10,5)],11)
=> ?
=> ? = 4
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ([(0,4),(0,6),(1,12),(2,8),(3,10),(4,11),(5,1),(5,7),(6,5),(6,11),(7,10),(7,12),(9,8),(10,9),(11,3),(11,7),(12,2),(12,9)],13)
=> ?
=> ? = 4
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ?
=> ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,11),(2,5),(2,15),(3,13),(4,3),(4,17),(5,4),(5,16),(6,2),(6,14),(7,1),(7,14),(9,12),(10,9),(11,10),(12,8),(13,8),(14,11),(14,15),(15,10),(15,16),(16,9),(16,17),(17,12),(17,13)],18)
=> ?
=> ? = 2
[]
=> []
=> ?
=> ?
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ?
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ?
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ([(0,10),(2,3),(3,5),(4,2),(5,7),(6,4),(7,9),(8,6),(9,1),(10,8)],11)
=> ? = 0
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St000375
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00257: Permutations —Alexandersson Kebede⟶ Permutations
St000375: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Mp00066: Permutations —inverse⟶ Permutations
Mp00257: Permutations —Alexandersson Kebede⟶ Permutations
St000375: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,0,1,0]
=> [3,1,2] => [2,3,1] => [3,2,1] => 0
[1,1,0,0]
=> [2,3,1] => [3,1,2] => [1,3,2] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [3,2,4,1] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => [4,2,1,3] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => [1,3,4,2] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => [4,3,2,1] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,4,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => [3,2,4,5,1] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => [3,2,5,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => [4,2,1,5,3] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => [4,2,5,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => [5,2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => [1,3,4,5,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => [1,3,5,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => [4,3,2,5,1] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => [4,3,5,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => [5,3,2,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => [1,4,2,5,3] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => [1,4,5,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => [5,4,2,3,1] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,5,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => [3,2,4,5,6,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,4,6,1,5] => [3,2,4,6,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,3,5,1,6,4] => [3,2,5,1,6,4] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,3,5,6,4,1] => [3,2,5,6,4,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,3,6,1,4,5] => [3,2,6,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [2,4,1,5,6,3] => [4,2,1,5,6,3] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => [4,2,1,6,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,4,5,3,6,1] => [4,2,5,3,6,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => [4,2,5,6,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => [4,2,6,3,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [2,5,1,3,6,4] => [5,2,1,3,6,4] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [2,5,1,6,4,3] => [5,2,1,6,4,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [2,5,6,3,4,1] => [5,2,6,3,4,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [2,6,1,3,4,5] => [6,2,1,3,4,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,1,4,5,6,2] => [1,3,4,5,6,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => [1,3,4,6,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,1,5,2,6,4] => [1,3,5,2,6,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => [1,3,5,6,4,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => [1,3,6,2,4,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => [4,3,2,5,6,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => [4,3,2,6,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => [4,3,5,2,6,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => [4,3,5,6,1,2] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => [4,3,6,2,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,5,2,1,6,4] => [5,3,2,1,6,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => [5,3,2,6,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => [5,3,6,2,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => [6,3,2,1,4,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [2,3,4,5,6,7,1] => [3,2,4,5,6,7,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [2,3,4,5,7,1,6] => [3,2,4,5,7,1,6] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,4,6,1,7,5] => [3,2,4,6,1,7,5] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [2,3,4,7,1,5,6] => [3,2,4,7,1,5,6] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,4,2,5,6,7,1] => [4,3,2,5,6,7,1] => ? = 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [3,4,5,2,6,7,1] => [4,3,5,2,6,7,1] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [3,4,5,6,7,2,1] => [4,3,5,6,7,2,1] => ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [3,4,5,7,1,2,6] => [4,3,5,7,1,2,6] => ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [7,3,4,1,2,5,6] => [4,5,2,3,6,7,1] => [5,4,2,3,6,7,1] => ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [5,1,2,3,6,7,4] => [1,5,2,3,6,7,4] => ? = 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [5,1,2,3,7,4,6] => [1,5,2,3,7,4,6] => ? = 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,6,7,3,4,2,1] => [6,5,7,3,4,2,1] => ? = 3
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => [6,1,2,3,4,7,5] => [1,6,2,3,4,7,5] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => [1,7,2,3,4,5,6] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => [2,3,4,5,6,7,8,1] => [3,2,4,5,6,7,8,1] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => [2,3,4,5,6,8,1,7] => ? => ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [8,1,2,7,6,3,4,5] => [2,3,6,7,8,5,4,1] => ? => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => [2,4,1,6,3,8,5,7] => ? => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,1,8,2,3,4,5,7] => [2,4,5,6,7,1,8,3] => [4,2,5,6,7,1,8,3] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,1,4,2,6,3,5,7] => [2,4,6,3,7,5,8,1] => [4,2,6,3,7,5,8,1] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => [3,1,4,5,6,7,8,2] => ? => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,3,1,2,4,5,6,7] => [3,4,2,5,6,7,8,1] => ? => ? = 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [8,3,1,2,4,7,5,6] => [3,4,2,5,7,8,6,1] => [4,3,2,5,7,8,6,1] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => [3,4,5,2,6,7,8,1] => ? => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => [3,4,5,6,7,8,2,1] => ? => ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [8,3,1,5,6,2,4,7] => [3,6,2,7,4,5,8,1] => ? => ? = 3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [2,6,7,1,3,4,8,5] => [4,1,5,6,8,2,3,7] => [1,4,5,6,8,2,3,7] => ? = 0
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [6,3,8,1,2,7,4,5] => [4,5,2,7,8,1,6,3] => [5,4,2,7,8,1,6,3] => ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => [4,5,6,7,8,1,2,3] => ? => ? = 0
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,8,4,1,6,2,3,5] => [4,6,7,3,8,5,1,2] => [6,4,7,3,8,5,1,2] => ? = 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [8,3,4,1,6,7,2,5] => [4,7,2,3,8,5,6,1] => [7,4,2,3,8,5,6,1] => ? = 4
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [2,7,6,5,1,3,8,4] => [5,1,6,8,4,3,2,7] => ? => ? = 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [8,3,6,5,1,7,2,4] => [5,7,2,8,4,3,6,1] => ? => ? = 4
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [8,7,4,5,6,1,2,3] => [6,7,8,3,4,5,2,1] => ? => ? = 4
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => [7,1,2,3,4,5,8,6] => ? => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [8,1,2,3,4,5,6,7] => [1,8,2,3,4,5,6,7] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [2,3,4,5,6,7,8,9,1] => ? => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,1,2,3,4,5,6,9,7] => [2,3,4,5,6,7,9,1,8] => ? => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => [3,1,4,5,6,7,8,9,2] => ? => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [9,3,1,2,4,5,6,7,8] => [3,4,2,5,6,7,8,9,1] => ? => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,9,1,2,3,4,5,6,7] => [3,4,5,6,7,8,9,1,2] => ? => ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [9,7,8,1,2,3,4,5,6] => [4,5,6,7,8,9,2,3,1] => ? => ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => [8,1,2,3,4,5,6,9,7] => ? => ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => [9,1,2,3,4,5,6,7,8] => ? => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [10,9,1,2,3,4,5,6,7,8] => [3,4,5,6,7,8,9,10,2,1] => ? => ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [10,9,8,1,2,3,4,5,6,7] => [4,5,6,7,8,9,10,3,2,1] => ? => ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [7,8,9,10,1,2,3,4,5,6] => [5,6,7,8,9,10,1,2,3,4] => ? => ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => [10,1,2,3,4,5,6,7,8,9] => ? => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => [2,3,4,5,6,7,8,9,10,1] => ? => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [9,1,2,3,4,5,6,7,10,8] => [2,3,4,5,6,7,8,10,1,9] => ? => ? = 0
Description
The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$.
Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$.
See also [[St000213]] and [[St000119]].
Matching statistic: St001624
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 40%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,9),(2,15),(3,14),(4,11),(5,13),(6,7),(6,14),(7,5),(7,10),(8,1),(9,3),(9,6),(10,13),(10,15),(11,8),(12,11),(13,12),(14,2),(14,10),(15,4),(15,12)],16)
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,9),(2,8),(3,2),(3,7),(4,1),(4,7),(5,6),(6,3),(6,4),(7,8),(7,9),(8,10),(9,10)],11)
=> ?
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ?
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ?
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> ?
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ?
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,8),(3,7),(4,9),(5,9),(6,1),(6,7),(7,8),(8,2),(9,3),(9,6)],10)
=> ?
=> ? = 3 + 1
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ?
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 0 + 1
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St001877
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 40%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ? = 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,9),(2,15),(3,14),(4,11),(5,13),(6,7),(6,14),(7,5),(7,10),(8,1),(9,3),(9,6),(10,13),(10,15),(11,8),(12,11),(13,12),(14,2),(14,10),(15,4),(15,12)],16)
=> ? = 0
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,9),(2,8),(3,2),(3,7),(4,1),(4,7),(5,6),(6,3),(6,4),(7,8),(7,9),(8,10),(9,10)],11)
=> ?
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ?
=> ? = 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> ?
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,8),(3,7),(4,9),(5,9),(6,1),(6,7),(7,8),(8,2),(9,3),(9,6)],10)
=> ?
=> ? = 3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 0
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ?
=> ? = 2
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St000223
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000223: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 60%
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000223: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 60%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => ? = 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => ? = 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [2,7,4,1,3,5,6] => ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,5,4,1,7,3,6] => ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [7,3,4,1,2,5,6] => 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => ? = 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,7,4,5,1,3,6] => ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [7,3,4,5,1,2,6] => ? = 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,1,2,3,8,4,6,7] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,1,2,3,6,8,4,7] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => 0
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,3,1,2,4,5,6,7] => 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [5,6,1,2,3,8,4,7] => ? = 0
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [2,6,8,1,3,4,5,7] => ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [8,3,4,1,2,5,6,7] => ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => ? = 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => ? = 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [8,6,4,5,1,2,3,7] => ? = 3
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,1,2,3,4,5,9,6,8] => ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [9,1,2,7,6,3,4,5,8] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,9,6,8] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,1,9,2,3,4,5,7,8] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [9,1,4,2,6,3,5,7,8] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [9,3,1,2,4,5,6,7,8] => 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,10,1,3,4,5,6,7,8,9] => 0
[]
=> [1,0]
=> [1,0]
=> [2,1] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => 0
Description
The number of nestings in the permutation.
The following 33 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000441The number of successions of a permutation. St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000451The length of the longest pattern of the form k 1 2. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000877The depth of the binary word interpreted as a path. St001513The number of nested exceedences of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001823The Stasinski-Voll length of a signed permutation. St001946The number of descents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St001394The genus of a permutation. St000352The Elizalde-Pak rank of a permutation. St000058The order of a permutation. St000534The number of 2-rises of a permutation. St001115The number of even descents of a permutation. St000669The number of permutations obtained by switching ascents or descents of size 2. St000359The number of occurrences of the pattern 23-1. St000366The number of double descents of a permutation. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000007The number of saliances of the permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001866The nesting alignments of a signed permutation. St000068The number of minimal elements in a poset. St000842The breadth of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!