searching the database
Your data matches 15 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000392
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00094: Integer compositions —to binary word⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 => 1
[1,0,1,0]
=> [1,1] => 11 => 2
[1,1,0,0]
=> [2] => 10 => 1
[1,0,1,0,1,0]
=> [1,1,1] => 111 => 3
[1,0,1,1,0,0]
=> [1,2] => 110 => 2
[1,1,0,0,1,0]
=> [2,1] => 101 => 1
[1,1,0,1,0,0]
=> [3] => 100 => 1
[1,1,1,0,0,0]
=> [3] => 100 => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 2
[1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 2
[1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 2
[1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 1
[1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 1
[1,1,0,1,0,1,0,0]
=> [4] => 1000 => 1
[1,1,0,1,1,0,0,0]
=> [4] => 1000 => 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 1
[1,1,1,0,0,1,0,0]
=> [4] => 1000 => 1
[1,1,1,0,1,0,0,0]
=> [4] => 1000 => 1
[1,1,1,1,0,0,0,0]
=> [4] => 1000 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 11111 => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 11110 => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 11101 => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => 11100 => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 11100 => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 11011 => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 11010 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => 11001 => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 11001 => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 10111 => 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 10110 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 10101 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => 10011 => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 1
Description
The length of the longest run of ones in a binary word.
Matching statistic: St000969
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000969: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 70%
Mp00066: Permutations —inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000969: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 70%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,8,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,7,6,8] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,8,6,7] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,8,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,6,5,7,8] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,4,6,5,8,7] => [1,2,3,4,6,5,8,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,2,3,4,7,5,6,8] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,8,5,6,7] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,4,6,8,7,5] => [1,2,3,4,8,5,7,6] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,4,7,6,5,8] => [1,2,3,4,7,6,5,8] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,4,7,6,8,5] => [1,2,3,4,8,6,5,7] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,4,8,6,7,5] => [1,2,3,4,8,6,7,5] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,7,6,5] => [1,2,3,4,8,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [1,2,3,5,4,6,7,8] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,3,5,4,6,8,7] => [1,2,3,5,4,6,8,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6,8] => [1,2,3,5,4,7,6,8] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3,5,4,7,8,6] => [1,2,3,5,4,8,6,7] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,8,7,6] => [1,2,3,5,4,8,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,3,5,6,4,7,8] => [1,2,3,6,4,5,7,8] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,3,5,6,4,8,7] => [1,2,3,6,4,5,8,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,3,5,6,7,4,8] => [1,2,3,7,4,5,6,8] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [1,2,3,8,4,5,6,7] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,3,5,6,8,7,4] => [1,2,3,8,4,5,7,6] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,3,5,7,6,4,8] => [1,2,3,7,4,6,5,8] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,3,5,7,6,8,4] => [1,2,3,8,4,6,5,7] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,3,5,8,6,7,4] => [1,2,3,8,4,6,7,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3,5,8,7,6,4] => [1,2,3,8,4,7,6,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,3,6,5,4,7,8] => [1,2,3,6,5,4,7,8] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,3,6,5,4,8,7] => [1,2,3,6,5,4,8,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,3,6,5,7,4,8] => [1,2,3,7,5,4,6,8] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,3,6,5,7,8,4] => [1,2,3,8,5,4,6,7] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,3,6,5,8,7,4] => [1,2,3,8,5,4,7,6] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,3,7,5,6,4,8] => [1,2,3,7,5,6,4,8] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,3,7,5,6,8,4] => [1,2,3,8,5,6,4,7] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,8,5,6,7,4] => [1,2,3,8,5,6,7,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,3,8,5,7,6,4] => [1,2,3,8,5,7,6,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,7,6,5,4,8] => [1,2,3,7,6,5,4,8] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,3,7,6,5,8,4] => [1,2,3,8,6,5,4,7] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,3,8,6,5,7,4] => [1,2,3,8,6,5,7,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,8,6,7,5,4] => [1,2,3,8,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,7,6,5,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7,8] => [1,2,4,3,5,6,7,8] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,3,5,6,8,7] => [1,2,4,3,5,6,8,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5,7,6,8] => [1,2,4,3,5,7,6,8] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,2,4,3,5,7,8,6] => [1,2,4,3,5,8,6,7] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,3,5,8,7,6] => [1,2,4,3,5,8,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,5,7,8] => [1,2,4,3,6,5,7,8] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,8,7] => [1,2,4,3,6,5,8,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,2,4,3,6,7,5,8] => [1,2,4,3,7,5,6,8] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 3 + 1
Description
We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn−1] by adding c0 to cn−1. Then we calculate the global dimension of that CNakayama algebra.
Matching statistic: St000723
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000723: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 70%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000723: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 70%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> 2
[1,1,0,0]
=> [2] => [1,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [8] => ([],8)
=> ? = 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,1] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,3] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,3] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,2,1,1] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,3,1] => [5,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,4] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,4] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,3,1] => [5,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,4] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,4] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,4] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,2,3] => [4,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,2,3] => [4,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,3,1,1] => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,3,2] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,3,1,1] => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,3,2] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1,1] => [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1,3] => [3,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
Description
The maximal cardinality of a set of vertices with the same neighbourhood in a graph.
The set of so called mating graphs, for which this statistic equals 1, is enumerated by [1].
Matching statistic: St001652
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St001652: Permutations ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 70%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St001652: Permutations ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 70%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => [1,2] => 2
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,2,4,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,1,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,4,2,5,3] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,2,5,3,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,2,5,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [2,3,4,5,6,7,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => [2,3,4,5,6,1,7] => ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => [3,4,5,6,7,2,1] => ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,1,6,7] => [2,3,4,5,1,6,7] => ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,2,7,1] => [3,4,5,6,2,7,1] => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,1,2] => [3,4,5,6,1,7,2] => ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => [2,3,4,5,7,6,1] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,2,1,7] => [3,4,5,6,2,1,7] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,1,6] => [2,3,4,5,1,7,6] => ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7] => [2,3,4,1,5,6,7] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,7,1] => [3,4,5,2,6,7,1] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,1,7] => [3,4,5,2,6,1,7] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,1,5,6] => [2,3,4,1,5,7,6] => ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,7,1] => [2,3,4,6,5,7,1] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,1,2,7] => [3,4,5,1,6,2,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,3,1] => [4,5,6,2,7,3,1] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,1,7] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,1,2] => [4,5,6,1,7,3,2] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => [3,4,5,7,6,2,1] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,1,6,7] => [3,4,5,2,1,6,7] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,2,7,1] => [4,5,6,3,2,7,1] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,1,5,7] => [2,3,4,1,6,5,7] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,1,2] => [4,5,6,3,1,7,2] => ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,2,6,1] => [3,4,5,2,7,6,1] => ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,1,3] => [4,5,6,2,1,7,3] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,1,2] => [3,4,5,1,7,6,2] => ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,4,5,1] => [2,3,4,7,6,5,1] => ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,2,1,7] => [4,5,6,3,2,1,7] => ? = 3
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,2,1,6] => [3,4,5,2,1,7,6] => ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,4,1,5] => [2,3,4,1,7,6,5] => ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [5,6,7,4,3,2,1] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [2,3,1,4,5,6,7] => ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => [3,4,2,5,6,7,1] => ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,1,7] => [3,4,2,5,6,1,7] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [2,3,1,4,5,7,6] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => [4,5,3,6,7,2,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,1,6,7] => [3,4,2,5,1,6,7] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,2,7,1] => [4,5,3,6,2,7,1] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [6,2,3,1,4,5,7] => [2,3,1,4,6,5,7] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,1,2] => [4,5,3,6,1,7,2] => ? = 2
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [7,3,4,2,5,6,1] => [3,4,2,5,7,6,1] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,2,1,7] => [4,5,3,6,2,1,7] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [7,3,4,2,5,1,6] => [3,4,2,5,1,7,6] => ? = 2
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,1,4,5] => [2,3,1,4,7,6,5] => ? = 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [5,6,4,7,3,2,1] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,6,7,1] => [2,3,5,4,6,7,1] => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,6,1,7] => [2,3,5,4,6,1,7] => ? = 2
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => [3,4,6,5,7,2,1] => ? = 2
Description
The length of a longest interval of consecutive numbers.
For a permutation π=π1,…,πn, this statistic returns the length of a longest subsequence πk,…,πℓ such that πi+1=πi+1 for i∈{k,…,ℓ−1}.
Matching statistic: St001330
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 70%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 70%
Values
[1,0]
=> [1] => ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,0,0]
=> [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000456
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 10%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 10%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [2,1] => ([],2)
=> ([],2)
=> ? = 2
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ([],3)
=> ? = 3
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ([],4)
=> ? = 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ([],5)
=> ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([],6)
=> ([],6)
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(3,4),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001024
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001024: Dyck paths ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 60%
Mp00066: Permutations —inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001024: Dyck paths ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 60%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,7,5,6,4] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,7,3,4,6,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,6,3,5,4,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,7,3,5,4,6] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,7,5,6,3] => [1,2,7,3,5,6,4] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,7,3,6,5,4] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,6,4,3,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,7,4,3,5,6] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,7,4,3,6,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => [1,2,7,4,5,3,6] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,7,4,5,6,3] => [1,2,7,4,5,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,7,4,6,5,3] => [1,2,7,4,6,5,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,7,5,4,3,6] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => [1,2,7,5,4,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,7,5,6,4,3] => [1,2,7,6,4,5,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,5,6] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,4,5,7] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
Description
Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001210
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001210: Dyck paths ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 60%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001210: Dyck paths ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 60%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 2
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,1,0,0,1,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,2,1] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,3,1] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,3,1] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,2] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,1] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,2,3] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,3,2] => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,4,1] => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,4,1] => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,3,2] => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,4,1] => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,4,1] => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,4,1] => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1] => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,1,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,2,1,2,1] => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,2,1,3] => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,1,3] => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,2,1,1] => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,2,2] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,2,3,1] => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
Description
Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001545
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001545: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 10%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001545: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 10%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1 + 1
[1,0,1,0]
=> [1,2] => ([],2)
=> ([],1)
=> ? = 2 + 1
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> ? = 3 + 1
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
Description
The second Elser number of a connected graph.
For a connected graph G the k-th Elser number is
elsk(G)=(−1)|V(G)|+1∑N(−1)|E(N)||V(N)|k
where the sum is over all nuclei of G, that is, the connected subgraphs of G whose vertex set is a vertex cover of G.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Matching statistic: St001662
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St001662: Permutations ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Mp00066: Permutations —inverse⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St001662: Permutations ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 2
[1,1,0,0]
=> [2,3,1] => [3,1,2] => [3,2,1] => 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 3
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => [4,3,1,2] => 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => [4,2,1,3] => 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => [4,1,3,2] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => [5,1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => [5,4,1,2,3] => 3
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => [5,3,1,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => [5,1,2,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => [5,4,3,1,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => [5,2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => [5,4,2,1,3] => 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => [5,1,3,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => [4,2,5,1,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => [5,4,1,3,2] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => [5,3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => [5,2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => [5,1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,3,5,1,6,4] => [6,4,1,2,3,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,3,5,6,4,1] => [6,1,2,3,5,4] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,4,5,3,6,1] => [6,1,2,4,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => [5,3,6,1,2,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => [6,5,1,2,4,3] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [2,5,1,6,4,3] => [6,3,1,2,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [2,5,6,3,4,1] => [6,1,2,5,4,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,1,4,5,6,2] => [6,2,1,3,4,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => [6,2,1,3,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => [6,5,4,2,1,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => [6,1,3,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => [6,5,1,3,2,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => [4,2,6,1,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => [5,1,3,6,2,4] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => [4,2,6,5,1,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,5,2,1,6,4] => [6,4,1,3,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => [6,1,3,2,5,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => [5,4,2,6,1,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => [6,5,4,1,3,2] => 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [2,3,4,5,7,1,6] => [7,6,1,2,3,4,5] => ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,4,6,1,7,5] => [7,5,1,2,3,4,6] => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [2,3,4,6,7,5,1] => [7,1,2,3,4,6,5] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [2,3,4,7,1,5,6] => [7,6,5,1,2,3,4] => ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [2,3,5,1,7,4,6] => [7,6,4,1,2,3,5] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [2,3,5,6,4,7,1] => [7,1,2,3,5,4,6] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [2,3,5,6,7,4,1] => [6,4,7,1,2,3,5] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [2,3,5,7,4,1,6] => [7,6,1,2,3,5,4] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [2,3,6,1,4,7,5] => [7,5,4,1,2,3,6] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [2,3,6,1,7,5,4] => [7,4,1,2,3,6,5] => ? = 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [2,3,6,7,4,5,1] => [7,1,2,3,6,5,4] => ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [2,3,7,1,4,5,6] => [7,6,5,4,1,2,3] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [2,4,1,5,7,3,6] => [7,6,3,1,2,4,5] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [2,4,1,6,7,5,3] => [7,3,1,2,4,6,5] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [2,4,1,7,3,5,6] => [7,6,5,3,1,2,4] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [2,4,5,3,6,7,1] => [7,1,2,4,3,5,6] => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [2,4,5,3,7,1,6] => [7,6,1,2,4,3,5] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [2,4,5,6,3,7,1] => [5,3,7,1,2,4,6] => ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [2,4,5,6,7,1,3] => [6,1,2,4,7,3,5] => ? = 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [2,4,5,7,3,1,6] => [5,3,7,6,1,2,4] => ? = 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [2,4,6,3,1,7,5] => [7,5,1,2,4,3,6] => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [2,4,6,3,7,5,1] => [7,1,2,4,3,6,5] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [2,4,6,7,3,5,1] => [6,5,3,7,1,2,4] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [2,4,7,3,1,5,6] => [7,6,5,1,2,4,3] => ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [2,5,1,3,7,4,6] => [7,6,4,3,1,2,5] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [2,5,1,6,4,7,3] => [7,3,1,2,5,4,6] => ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [2,5,1,6,7,4,3] => [6,4,7,3,1,2,5] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [2,5,1,7,4,3,6] => [7,6,3,1,2,5,4] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [2,5,6,3,4,7,1] => [7,1,2,5,4,3,6] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [2,5,6,3,7,4,1] => [6,4,3,7,1,2,5] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [2,5,6,7,4,3,1] => [6,3,7,1,2,5,4] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [2,5,7,3,4,1,6] => [7,6,1,2,5,4,3] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [2,6,1,3,4,7,5] => [7,5,4,3,1,2,6] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [2,6,1,3,7,5,4] => [7,4,3,1,2,6,5] => ? = 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [2,6,1,7,4,5,3] => [7,3,1,2,6,5,4] => ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [2,6,7,3,4,5,1] => [7,1,2,6,5,4,3] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [2,7,1,3,4,5,6] => [7,6,5,4,3,1,2] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [3,1,4,5,6,7,2] => [7,2,1,3,4,5,6] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [3,1,4,5,7,2,6] => [7,6,2,1,3,4,5] => ? = 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [3,1,4,6,7,5,2] => [7,2,1,3,4,6,5] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [3,1,4,7,2,5,6] => [7,6,5,2,1,3,4] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [3,1,5,2,7,4,6] => [7,6,4,2,1,3,5] => ? = 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [3,1,5,6,4,7,2] => [7,2,1,3,5,4,6] => ? = 1
Description
The length of the longest factor of consecutive numbers in a permutation.
The following 5 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000877The depth of the binary word interpreted as a path. St000649The number of 3-excedences of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!