searching the database
Your data matches 152 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001358
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
Description
The largest degree of a regular subgraph of a graph.
For k>2, it is an NP-complete problem to determine whether a graph has a k-regular subgraph, see [1].
Matching statistic: St000455
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> -1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> -1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> -1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> -1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> -1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> -1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000147
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
Description
The largest part of an integer partition.
Matching statistic: St000384
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
Description
The maximal part of the shifted composition of an integer partition.
A partition λ=(λ1,…,λk) is shifted into a composition by adding i−1 to the i-th part.
The statistic is then maxi{λi+i−1}.
See also [[St000380]].
Matching statistic: St000784
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> 0 = -1 + 1
Description
The maximum of the length and the largest part of the integer partition.
This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1].
See also [[St001214]].
Matching statistic: St001251
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001251: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001251: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
Description
The number of parts of a partition that are not congruent 1 modulo 3.
Matching statistic: St001280
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = -1 + 1
Description
The number of parts of an integer partition that are at least two.
Matching statistic: St000175
Mp00013: Binary trees —to poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [3]
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [3]
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape.
Given a partition λ with r parts, the number of semi-standard Young-tableaux of shape kλ and boxes with values in [r] grows as a polynomial in k. This follows by setting q=1 in (7.105) on page 375 of [1], which yields the polynomial
p(k)=∏i<jk(λj−λi)+j−ij−i.
The statistic of the degree of this polynomial.
For example, the partition (3,2,1,1,1) gives
p(k)=−136(k−3)(2k−3)(k−2)2(k−1)3
which has degree 7 in k. Thus, [3,2,1,1,1]↦7.
This is the same as the number of unordered pairs of different parts, which follows from:
degp(k)=∑i<j{1λj≠λi0λi=λj=∑i<jλj≠λi1
Matching statistic: St000454
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = -1 + 1
[[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001525
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St001525: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St001525: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> [3]
=> 0 = -1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> [3]
=> 0 = -1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [4]
=> 0 = -1 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0 = -1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 1 = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 1 = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 0 = -1 + 1
[[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[.,.],[[[.,.],.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[.,.],[[[.,.],.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
[[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> [6,6,5,4]
=> ? = 1 + 1
Description
The number of symmetric hooks on the diagonal of a partition.
The following 142 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000010The length of the partition. St000150The floored half-sum of the multiplicities of a partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000651The maximal size of a rise in a permutation. St000652The maximal difference between successive positions of a permutation. St000145The Dyson rank of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001587Half of the largest even part of an integer partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000533The minimum of the number of parts and the size of the first part of an integer partition. St001432The order dimension of the partition. St000143The largest repeated part of a partition. St000481The number of upper covers of a partition in dominance order. St001091The number of parts in an integer partition whose next smaller part has the same size. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St000668The least common multiple of the parts of the partition. St001128The exponens consonantiae of a partition. St000141The maximum drop size of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St000146The Andrews-Garvan crank of a partition. St000783The side length of the largest staircase partition fitting into a partition. St000225Difference between largest and smallest parts in a partition. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St000183The side length of the Durfee square of an integer partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St000909The number of maximal chains of maximal size in a poset. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St001727The number of invisible inversions of a permutation. St000358The number of occurrences of the pattern 31-2. St000527The width of the poset. St000741The Colin de Verdière graph invariant. St000632The jump number of the poset. St000100The number of linear extensions of a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000355The number of occurrences of the pattern 21-3. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000223The number of nestings in the permutation. St001083The number of boxed occurrences of 132 in a permutation. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000359The number of occurrences of the pattern 23-1. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St000624The normalized sum of the minimal distances to a greater element. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St001082The number of boxed occurrences of 123 in a permutation. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001742The difference of the maximal and the minimal degree in a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000822The Hadwiger number of the graph. St000039The number of crossings of a permutation. St000216The absolute length of a permutation. St000316The number of non-left-to-right-maxima of a permutation. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St001175The size of a partition minus the hook length of the base cell. St001331The size of the minimal feedback vertex set. St001388The number of non-attacking neighbors of a permutation. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000387The matching number of a graph. St000536The pathwidth of a graph. St000638The number of up-down runs of a permutation. St001277The degeneracy of a graph. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St001963The tree-depth of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001389The number of partitions of the same length below the given integer partition. St000640The rank of the largest boolean interval in a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St001397Number of pairs of incomparable elements in a finite poset. St001877Number of indecomposable injective modules with projective dimension 2. St000633The size of the automorphism group of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001779The order of promotion on the set of linear extensions of a poset. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000928The sum of the coefficients of the character polynomial of an integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000477The weight of a partition according to Alladi. St001568The smallest positive integer that does not appear twice in the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001811The Castelnuovo-Mumford regularity of a permutation. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001569The maximal modular displacement of a permutation. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001964The interval resolution global dimension of a poset. St000534The number of 2-rises of a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001866The nesting alignments of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001862The number of crossings of a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!