searching the database
Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001148
St001148: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 3 = 2 + 1
['A',2]
=> 8 = 7 + 1
['B',2]
=> 10 = 9 + 1
Description
The dimension of the adjoint representation of the Lie group of given type.
Matching statistic: St001562
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001562: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001562: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 6 = 7 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 8 = 9 - 1
Description
The value of the complete homogeneous symmetric function evaluated at 1.
The statistic is $h_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k$,
where $\lambda$ has $k$ parts.
Matching statistic: St001936
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St001936: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St001936: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 6 = 7 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 8 = 9 - 1
Description
The number of transitive factorisations of a permutation of given cycle type into star transpositions.
Let $\pi$ be a permutation of cycle type $\lambda\vdash n$ and let $r=n + \ell(\lambda) - 2$. A minimal factorization of $\pi$ into star transpositions is an $r$-tuple of transpositions $(1, a_1)\dots(1, a_r)$ whose product (in this order) equals $\pi$.
The number of such factorizations equals [1]
$$
\frac{r!}{n!} \lambda_1\dots\lambda_{\ell(\lambda)}.
$$
Matching statistic: St000479
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St000949
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000949: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000949: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 7
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 9
Description
Gives the number of generalised tilting modules of the corresponding LNakayama algebra.
Matching statistic: St000179
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000179: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000179: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 6 = 7 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 8 = 9 - 1
Description
The product of the hook lengths of the integer partition.
Consider the Ferrers diagram associated with the integer partition. For each cell in the diagram, drawn using the English convention, consider its ''hook'': the cell itself, all cells in the same row to the right and all cells in the same column below. The ''hook length of a cell'' is the number of cells in the hook of a cell. This statistic is the product of the hook lengths of all cells in the partition.
Let $H_\lambda$ denote this product, then the number of standard Young tableaux of shape $\lambda$, (traditionally denoted $f^\lambda$) equals $n! / H_\lambda$. Therefore, it is consistent to set the product of the hook lengths of the empty partition equal to $1$.
Matching statistic: St000869
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000869: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000869: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 6 = 7 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 8 = 9 - 1
Description
The sum of the hook lengths of an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the sum of all hook lengths of a partition.
Matching statistic: St001138
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001138: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001138: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 3 = 2 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 8 = 7 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10 = 9 + 1
Description
The number of indecomposable modules with projective dimension or injective dimension at most one in the corresponding Nakayama algebra.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!