searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000530
(load all 43 compositions to match this statistic)
(load all 43 compositions to match this statistic)
St000530: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 2
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 3
[1,3,2,4] => 5
[1,3,4,2] => 3
[1,4,2,3] => 5
[1,4,3,2] => 3
[2,1,3,4] => 3
[2,1,4,3] => 5
[2,3,1,4] => 5
[2,3,4,1] => 3
[2,4,1,3] => 5
[2,4,3,1] => 3
[3,1,2,4] => 3
[3,1,4,2] => 5
[3,2,1,4] => 3
[3,2,4,1] => 5
[3,4,1,2] => 5
[3,4,2,1] => 3
[4,1,2,3] => 3
[4,1,3,2] => 5
[4,2,1,3] => 3
[4,2,3,1] => 5
[4,3,1,2] => 3
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 4
[1,2,4,3,5] => 9
[1,2,4,5,3] => 4
[1,2,5,3,4] => 9
[1,2,5,4,3] => 6
[1,3,2,4,5] => 9
[1,3,2,5,4] => 16
[1,3,4,2,5] => 9
[1,3,4,5,2] => 4
[1,3,5,2,4] => 9
[1,3,5,4,2] => 6
[1,4,2,3,5] => 9
[1,4,2,5,3] => 16
[1,4,3,2,5] => 11
[1,4,3,5,2] => 16
[1,4,5,2,3] => 9
[1,4,5,3,2] => 6
Description
The number of permutations with the same descent word as the given permutation.
The descent word of a permutation is the binary word given by [[Mp00109]]. For a given permutation, this statistic is the number of permutations with the same descent word, so the number of elements in the fiber of the map [[Mp00109]] containing a given permutation.
This statistic appears as ''up-down analysis'' in statistical applications in genetics, see [1] and the references therein.
Matching statistic: St000277
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
St000277: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000277: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => 1
[2,1] => [1,1] => 1
[1,2,3] => [3] => 1
[1,3,2] => [2,1] => 2
[2,1,3] => [1,2] => 2
[2,3,1] => [2,1] => 2
[3,1,2] => [1,2] => 2
[3,2,1] => [1,1,1] => 1
[1,2,3,4] => [4] => 1
[1,2,4,3] => [3,1] => 3
[1,3,2,4] => [2,2] => 5
[1,3,4,2] => [3,1] => 3
[1,4,2,3] => [2,2] => 5
[1,4,3,2] => [2,1,1] => 3
[2,1,3,4] => [1,3] => 3
[2,1,4,3] => [1,2,1] => 5
[2,3,1,4] => [2,2] => 5
[2,3,4,1] => [3,1] => 3
[2,4,1,3] => [2,2] => 5
[2,4,3,1] => [2,1,1] => 3
[3,1,2,4] => [1,3] => 3
[3,1,4,2] => [1,2,1] => 5
[3,2,1,4] => [1,1,2] => 3
[3,2,4,1] => [1,2,1] => 5
[3,4,1,2] => [2,2] => 5
[3,4,2,1] => [2,1,1] => 3
[4,1,2,3] => [1,3] => 3
[4,1,3,2] => [1,2,1] => 5
[4,2,1,3] => [1,1,2] => 3
[4,2,3,1] => [1,2,1] => 5
[4,3,1,2] => [1,1,2] => 3
[4,3,2,1] => [1,1,1,1] => 1
[1,2,3,4,5] => [5] => 1
[1,2,3,5,4] => [4,1] => 4
[1,2,4,3,5] => [3,2] => 9
[1,2,4,5,3] => [4,1] => 4
[1,2,5,3,4] => [3,2] => 9
[1,2,5,4,3] => [3,1,1] => 6
[1,3,2,4,5] => [2,3] => 9
[1,3,2,5,4] => [2,2,1] => 16
[1,3,4,2,5] => [3,2] => 9
[1,3,4,5,2] => [4,1] => 4
[1,3,5,2,4] => [3,2] => 9
[1,3,5,4,2] => [3,1,1] => 6
[1,4,2,3,5] => [2,3] => 9
[1,4,2,5,3] => [2,2,1] => 16
[1,4,3,2,5] => [2,1,2] => 11
[1,4,3,5,2] => [2,2,1] => 16
[1,4,5,2,3] => [3,2] => 9
[1,4,5,3,2] => [3,1,1] => 6
Description
The number of ribbon shaped standard tableaux.
A ribbon is a connected skew shape which does not contain a $2\times 2$ square. The set of ribbon shapes are therefore in bijection with integer compositons, the parts of the composition specify the row lengths. This statistic records the number of standard tableaux of the given shape.
This is also the size of the preimage of the map 'descent composition' [[Mp00071]] from permutations to integer compositions: reading a tableau from bottom to top we obtain a permutation whose descent set is as prescribed.
For a composition $c=c_1,\dots,c_k$ of $n$, the number of ribbon shaped standard tableaux equals
$$
\sum_d (-1)^{k-\ell} \binom{n}{d_1, d_2, \dots, d_\ell},
$$
where the sum is over all coarsenings of $c$ obtained by replacing consecutive summands by their sum, see [sec 14.4, 1]
Matching statistic: St000529
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00109: Permutations —descent word⟶ Binary words
St000529: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000529: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0 => 1
[2,1] => 1 => 1
[1,2,3] => 00 => 1
[1,3,2] => 01 => 2
[2,1,3] => 10 => 2
[2,3,1] => 01 => 2
[3,1,2] => 10 => 2
[3,2,1] => 11 => 1
[1,2,3,4] => 000 => 1
[1,2,4,3] => 001 => 3
[1,3,2,4] => 010 => 5
[1,3,4,2] => 001 => 3
[1,4,2,3] => 010 => 5
[1,4,3,2] => 011 => 3
[2,1,3,4] => 100 => 3
[2,1,4,3] => 101 => 5
[2,3,1,4] => 010 => 5
[2,3,4,1] => 001 => 3
[2,4,1,3] => 010 => 5
[2,4,3,1] => 011 => 3
[3,1,2,4] => 100 => 3
[3,1,4,2] => 101 => 5
[3,2,1,4] => 110 => 3
[3,2,4,1] => 101 => 5
[3,4,1,2] => 010 => 5
[3,4,2,1] => 011 => 3
[4,1,2,3] => 100 => 3
[4,1,3,2] => 101 => 5
[4,2,1,3] => 110 => 3
[4,2,3,1] => 101 => 5
[4,3,1,2] => 110 => 3
[4,3,2,1] => 111 => 1
[1,2,3,4,5] => 0000 => 1
[1,2,3,5,4] => 0001 => 4
[1,2,4,3,5] => 0010 => 9
[1,2,4,5,3] => 0001 => 4
[1,2,5,3,4] => 0010 => 9
[1,2,5,4,3] => 0011 => 6
[1,3,2,4,5] => 0100 => 9
[1,3,2,5,4] => 0101 => 16
[1,3,4,2,5] => 0010 => 9
[1,3,4,5,2] => 0001 => 4
[1,3,5,2,4] => 0010 => 9
[1,3,5,4,2] => 0011 => 6
[1,4,2,3,5] => 0100 => 9
[1,4,2,5,3] => 0101 => 16
[1,4,3,2,5] => 0110 => 11
[1,4,3,5,2] => 0101 => 16
[1,4,5,2,3] => 0010 => 9
[1,4,5,3,2] => 0011 => 6
Description
The number of permutations whose descent word is the given binary word.
This is the sizes of the preimages of the map [[Mp00109]].
Matching statistic: St001595
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
St001595: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
St001595: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => [[2],[]]
=> 1
[2,1] => [1,1] => [[1,1],[]]
=> 1
[1,2,3] => [3] => [[3],[]]
=> 1
[1,3,2] => [2,1] => [[2,2],[1]]
=> 2
[2,1,3] => [1,2] => [[2,1],[]]
=> 2
[2,3,1] => [2,1] => [[2,2],[1]]
=> 2
[3,1,2] => [1,2] => [[2,1],[]]
=> 2
[3,2,1] => [1,1,1] => [[1,1,1],[]]
=> 1
[1,2,3,4] => [4] => [[4],[]]
=> 1
[1,2,4,3] => [3,1] => [[3,3],[2]]
=> 3
[1,3,2,4] => [2,2] => [[3,2],[1]]
=> 5
[1,3,4,2] => [3,1] => [[3,3],[2]]
=> 3
[1,4,2,3] => [2,2] => [[3,2],[1]]
=> 5
[1,4,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> 3
[2,1,3,4] => [1,3] => [[3,1],[]]
=> 3
[2,1,4,3] => [1,2,1] => [[2,2,1],[1]]
=> 5
[2,3,1,4] => [2,2] => [[3,2],[1]]
=> 5
[2,3,4,1] => [3,1] => [[3,3],[2]]
=> 3
[2,4,1,3] => [2,2] => [[3,2],[1]]
=> 5
[2,4,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> 3
[3,1,2,4] => [1,3] => [[3,1],[]]
=> 3
[3,1,4,2] => [1,2,1] => [[2,2,1],[1]]
=> 5
[3,2,1,4] => [1,1,2] => [[2,1,1],[]]
=> 3
[3,2,4,1] => [1,2,1] => [[2,2,1],[1]]
=> 5
[3,4,1,2] => [2,2] => [[3,2],[1]]
=> 5
[3,4,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> 3
[4,1,2,3] => [1,3] => [[3,1],[]]
=> 3
[4,1,3,2] => [1,2,1] => [[2,2,1],[1]]
=> 5
[4,2,1,3] => [1,1,2] => [[2,1,1],[]]
=> 3
[4,2,3,1] => [1,2,1] => [[2,2,1],[1]]
=> 5
[4,3,1,2] => [1,1,2] => [[2,1,1],[]]
=> 3
[4,3,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> 1
[1,2,3,4,5] => [5] => [[5],[]]
=> 1
[1,2,3,5,4] => [4,1] => [[4,4],[3]]
=> 4
[1,2,4,3,5] => [3,2] => [[4,3],[2]]
=> 9
[1,2,4,5,3] => [4,1] => [[4,4],[3]]
=> 4
[1,2,5,3,4] => [3,2] => [[4,3],[2]]
=> 9
[1,2,5,4,3] => [3,1,1] => [[3,3,3],[2,2]]
=> 6
[1,3,2,4,5] => [2,3] => [[4,2],[1]]
=> 9
[1,3,2,5,4] => [2,2,1] => [[3,3,2],[2,1]]
=> 16
[1,3,4,2,5] => [3,2] => [[4,3],[2]]
=> 9
[1,3,4,5,2] => [4,1] => [[4,4],[3]]
=> 4
[1,3,5,2,4] => [3,2] => [[4,3],[2]]
=> 9
[1,3,5,4,2] => [3,1,1] => [[3,3,3],[2,2]]
=> 6
[1,4,2,3,5] => [2,3] => [[4,2],[1]]
=> 9
[1,4,2,5,3] => [2,2,1] => [[3,3,2],[2,1]]
=> 16
[1,4,3,2,5] => [2,1,2] => [[3,2,2],[1,1]]
=> 11
[1,4,3,5,2] => [2,2,1] => [[3,3,2],[2,1]]
=> 16
[1,4,5,2,3] => [3,2] => [[4,3],[2]]
=> 9
[1,4,5,3,2] => [3,1,1] => [[3,3,3],[2,2]]
=> 6
Description
The number of standard Young tableaux of the skew partition.
Matching statistic: St000100
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => [[2],[]]
=> ([(0,1)],2)
=> 1
[2,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> 1
[1,2,3] => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> 2
[2,1,3] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2
[2,3,1] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> 2
[3,1,2] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2
[3,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,3,2,4] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[1,3,4,2] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,4,2,3] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[1,4,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,1,3,4] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[2,1,4,3] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[2,3,1,4] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[2,3,4,1] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,1,3] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[2,4,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,2,4] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[3,1,4,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[3,2,1,4] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[3,2,4,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[3,4,1,2] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[3,4,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[4,1,2,3] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[4,1,3,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[4,2,1,3] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[4,2,3,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[4,3,1,2] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[4,3,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[1,2,4,3,5] => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
[1,2,4,5,3] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[1,2,5,3,4] => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
[1,2,5,4,3] => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[1,3,2,4,5] => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 9
[1,3,2,5,4] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
[1,3,4,2,5] => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
[1,3,4,5,2] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[1,3,5,2,4] => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
[1,3,5,4,2] => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[1,4,2,3,5] => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 9
[1,4,2,5,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
[1,4,3,2,5] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 11
[1,4,3,5,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
[1,4,5,2,3] => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
[1,4,5,3,2] => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
Description
The number of linear extensions of a poset.
Matching statistic: St000001
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000001: Permutations ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 34%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000001: Permutations ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 34%
Values
[1,2] => [2] => [1,1,0,0]
=> [2,3,1] => 1
[2,1] => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 11
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,2,4,3,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,4,3,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,5,3,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,5,3,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,5,4,3,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,5,4,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,3,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,6,3,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,4,3,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,6,4,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,5,3,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,6,5,4,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
[1,3,2,4,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
[1,3,2,4,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,3,2,5,4,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,3,2,5,6,4] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,3,2,6,4,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,3,2,6,5,4] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
[1,3,4,2,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,3,4,2,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,5,2,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,3,5,2,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,5,4,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,3,5,4,6,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,6,2,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,3,6,2,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,6,4,2,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,3,6,4,5,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,6,5,2,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,3,6,5,4,2] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
[1,4,2,3,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
[1,4,2,3,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,4,2,5,3,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,2,5,6,3] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,4,2,6,3,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,2,6,5,3] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
[1,4,3,2,5,6] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 26
[1,4,3,2,6,5] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 40
[1,4,3,5,2,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,3,5,6,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,4,3,6,2,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,3,6,5,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
[1,4,5,2,3,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,4,5,2,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,4,5,3,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,4,5,3,6,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,4,6,2,3,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,4,6,2,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,4,6,3,2,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,4,6,3,5,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
Description
The number of reduced words for a permutation.
This is the number of ways to write a permutation as a minimal length product of simple transpositions. E.g., there are two reduced words for the permutation $[3,2,1]$, which are $(1,2)(2,3)(1,2) = (2,3)(1,2)(2,3)$.
Matching statistic: St000255
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 34%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 34%
Values
[1,2] => [2] => [1,1,0,0]
=> [2,3,1] => 1
[2,1] => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 11
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,2,4,3,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,4,3,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,5,3,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,5,3,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,5,4,3,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,5,4,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,3,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,6,3,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,4,3,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,6,4,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,5,3,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,6,5,4,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
[1,3,2,4,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
[1,3,2,4,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,3,2,5,4,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,3,2,5,6,4] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,3,2,6,4,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,3,2,6,5,4] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
[1,3,4,2,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,3,4,2,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,5,2,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,3,5,2,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,5,4,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,3,5,4,6,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,6,2,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,3,6,2,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,6,4,2,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,3,6,4,5,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,3,6,5,2,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,3,6,5,4,2] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
[1,4,2,3,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
[1,4,2,3,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,4,2,5,3,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,2,5,6,3] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,4,2,6,3,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,2,6,5,3] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
[1,4,3,2,5,6] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 26
[1,4,3,2,6,5] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 40
[1,4,3,5,2,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,3,5,6,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,4,3,6,2,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,4,3,6,5,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
[1,4,5,2,3,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,4,5,2,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,4,5,3,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,4,5,3,6,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,4,6,2,3,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,4,6,2,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,4,6,3,2,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,4,6,3,5,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000880
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000880: Permutations ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 28%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000880: Permutations ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 28%
Values
[1,2] => [2] => [1,1,0,0]
=> [2,3,1] => 1
[2,1] => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 11
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
[3,2,1,4,5] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
[3,2,1,5,4] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[4,2,1,3,5] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
[4,2,1,5,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[4,3,1,2,5] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
[4,3,1,5,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[4,3,2,1,5] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
[4,3,2,5,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[5,2,1,3,4] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
[5,2,1,4,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[5,3,1,2,4] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
[5,3,1,4,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[5,3,2,1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
[5,3,2,4,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[5,4,1,2,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
[5,4,1,3,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[5,4,2,1,3] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
[5,4,2,3,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
[5,4,3,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
[5,4,3,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 1
[1,2,3,4,5,6] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 1
[1,2,3,4,6,5] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 5
[1,2,3,5,4,6] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 14
[1,2,3,5,6,4] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 5
[1,2,3,6,4,5] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 14
[1,2,3,6,5,4] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 10
[1,2,4,3,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,4,3,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,4,5,3,6] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 14
[1,2,4,5,6,3] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 5
[1,2,4,6,3,5] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 14
[1,2,4,6,5,3] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 10
[1,2,5,3,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,5,3,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,5,4,3,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,5,4,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,5,6,3,4] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 14
[1,2,5,6,4,3] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 10
[1,2,6,3,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
[1,2,6,3,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,4,3,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,6,4,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
[1,2,6,5,3,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
[1,2,6,5,4,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
[1,3,2,4,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
[1,3,2,4,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,3,2,5,4,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,3,2,5,6,4] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
[1,3,2,6,4,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
[1,3,2,6,5,4] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
Description
The number of connected components of long braid edges in the graph of braid moves of a permutation.
Given a permutation $\pi$, let $\operatorname{Red}(\pi)$ denote the set of reduced words for $\pi$ in terms of simple transpositions $s_i = (i,i+1)$. We now say that two reduced words are connected by a long braid move if they are obtained from each other by a modification of the form $s_i s_{i+1} s_i \leftrightarrow s_{i+1} s_i s_{i+1}$ as a consecutive subword of a reduced word.
For example, the two reduced words $s_1s_3s_2s_3$ and $s_1s_2s_3s_2$ for
$$(124) = (12)(34)(23)(34) = (12)(23)(34)(23)$$
share an edge because they are obtained from each other by interchanging $s_3s_2s_3 \leftrightarrow s_3s_2s_3$.
This statistic counts the number connected components of such long braid moves among all reduced words.
Matching statistic: St001633
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001633: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 9%
Mp00209: Permutations —pattern poset⟶ Posets
St001633: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> 0 = 1 - 1
[2,1] => [2,1] => ([(0,1)],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,3,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,3,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,2,4,3] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,3,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[1,3,4,2] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
[1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,1,4,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 5 - 1
[2,3,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[2,3,4,1] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[2,4,3,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 - 1
[3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 - 1
[3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[3,2,1,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,2,4,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 5 - 1
[3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,1,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,1,3,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[4,2,1,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
[4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 5 - 1
[4,3,1,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 9 - 1
[1,2,4,5,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 4 - 1
[1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 9 - 1
[1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
[1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 9 - 1
[1,3,2,5,4] => [3,5,1,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 16 - 1
[1,3,4,2,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 9 - 1
[1,3,4,5,2] => [3,4,5,1,2] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 4 - 1
[1,3,5,2,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 9 - 1
[1,3,5,4,2] => [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 6 - 1
[1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 9 - 1
[1,4,2,5,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 16 - 1
[1,4,3,2,5] => [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 11 - 1
[1,4,3,5,2] => [4,3,5,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 16 - 1
[1,4,5,2,3] => [4,1,5,2,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 9 - 1
[1,4,5,3,2] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 6 - 1
[1,5,2,3,4] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 9 - 1
[1,5,2,4,3] => [5,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 16 - 1
[1,5,3,2,4] => [5,1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 11 - 1
[1,5,3,4,2] => [3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 16 - 1
[1,5,4,2,3] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 11 - 1
[1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,3,5,4] => [2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 11 - 1
[2,1,4,3,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 16 - 1
[2,1,4,5,3] => [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 11 - 1
[2,1,5,3,4] => [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 16 - 1
[2,1,5,4,3] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 9 - 1
[2,3,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 9 - 1
[2,3,1,5,4] => [2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 16 - 1
[2,3,4,1,5] => [2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 9 - 1
[2,3,4,5,1] => [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,3,5,1,4] => [5,2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 9 - 1
[2,3,5,4,1] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 6 - 1
[2,4,1,3,5] => [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 9 - 1
[2,4,1,5,3] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 16 - 1
[2,4,3,1,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 11 - 1
[5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000848
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St000848: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 9%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St000848: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[2,1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,3,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,3,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,2,4,3] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,3,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,3,4,2] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
[1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,1,4,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 5 - 1
[2,3,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[2,3,4,1] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[2,4,3,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[3,2,1,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,2,4,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 5 - 1
[3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,1,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,1,3,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[4,2,1,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
[4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[4,3,1,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 9 - 1
[1,2,4,5,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 4 - 1
[1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 9 - 1
[1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
[1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 9 - 1
[1,3,2,5,4] => [3,5,1,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,2),(0,3),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,4),(8,11),(9,4),(9,5),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 16 - 1
[1,3,4,2,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,2),(0,3),(1,8),(1,9),(2,5),(2,6),(2,7),(3,1),(3,5),(3,6),(3,7),(4,10),(5,8),(5,9),(6,4),(6,9),(7,4),(7,8),(8,10),(9,10)],11)
=> ? = 9 - 1
[1,3,4,5,2] => [3,4,5,1,2] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 4 - 1
[1,3,5,2,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 9 - 1
[1,3,5,4,2] => [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,5),(1,8),(2,6),(2,7),(3,1),(3,6),(3,7),(4,9),(5,9),(6,4),(6,8),(7,4),(7,5),(7,8),(8,9)],10)
=> ? = 6 - 1
[1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? = 9 - 1
[1,4,2,5,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,2),(0,3),(1,8),(1,9),(2,5),(2,6),(2,7),(3,1),(3,5),(3,6),(3,7),(4,10),(5,8),(5,9),(6,4),(6,9),(7,4),(7,8),(8,10),(9,10)],11)
=> ? = 16 - 1
[1,4,3,2,5] => [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 11 - 1
[1,4,3,5,2] => [4,3,5,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 16 - 1
[1,4,5,2,3] => [4,1,5,2,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,2),(0,3),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,4),(8,11),(9,4),(9,5),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 9 - 1
[1,4,5,3,2] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,2),(0,3),(1,4),(1,5),(2,7),(2,8),(3,1),(3,7),(3,8),(4,9),(5,9),(6,9),(7,5),(7,6),(8,4),(8,6)],10)
=> ? = 6 - 1
[1,5,2,3,4] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 9 - 1
[1,5,2,4,3] => [5,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 16 - 1
[1,5,3,2,4] => [5,1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 11 - 1
[1,5,3,4,2] => [3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,2),(0,3),(1,5),(1,9),(2,6),(2,7),(2,8),(3,1),(3,6),(3,7),(3,8),(4,10),(5,10),(6,9),(7,4),(7,9),(8,4),(8,5),(9,10)],11)
=> ? = 16 - 1
[1,5,4,2,3] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 11 - 1
[1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,3,5,4] => [2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,2),(0,3),(1,4),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,5),(8,11),(9,4),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 11 - 1
[2,1,4,3,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 16 - 1
[2,1,4,5,3] => [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,2),(0,3),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,4),(8,11),(9,4),(9,5),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 11 - 1
[2,1,5,3,4] => [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 16 - 1
[2,1,5,4,3] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 9 - 1
[2,3,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 9 - 1
[2,3,1,5,4] => [2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,2),(0,3),(1,4),(1,5),(1,10),(2,6),(2,7),(2,8),(2,9),(3,1),(3,6),(3,7),(3,8),(3,9),(4,12),(5,12),(6,11),(7,10),(7,11),(8,5),(8,11),(9,4),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 16 - 1
[2,3,4,1,5] => [2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? = 9 - 1
[2,3,4,5,1] => [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,3,5,1,4] => [5,2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 9 - 1
[2,3,5,4,1] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,3),(0,4),(1,10),(2,7),(2,8),(3,1),(3,5),(3,6),(4,2),(4,5),(4,6),(5,8),(5,10),(6,7),(6,10),(7,9),(8,9),(10,9)],11)
=> ? = 6 - 1
[2,4,1,3,5] => [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 9 - 1
[2,4,1,5,3] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,2),(0,3),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,4),(7,10),(7,11),(7,12),(8,4),(8,9),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? = 16 - 1
[2,4,3,1,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,3),(0,4),(1,8),(1,9),(2,10),(2,11),(3,1),(3,5),(3,6),(3,7),(4,2),(4,5),(4,6),(4,7),(5,9),(5,11),(6,9),(6,10),(7,8),(7,10),(7,11),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 11 - 1
[5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
Description
The balance constant multiplied with the number of linear extensions of a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion $P(x,y)$ of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. The balance constant of a poset is $\max\min(P(x,y), P(y,x)).$
Kislitsyn [1] conjectured that every poset which is not a chain is $1/3$-balanced. Brightwell, Felsner and Trotter [2] show that it is at least $(1-\sqrt 5)/10$-balanced.
Olson and Sagan [3] exhibit various posets that are $1/2$-balanced.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!