searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000533
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
St000533: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 2
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 2
[3,2]
=> 2
[3,1,1]
=> 3
[2,2,1]
=> 2
[2,1,1,1]
=> 2
[1,1,1,1,1]
=> 1
[6]
=> 1
[5,1]
=> 2
[4,2]
=> 2
[4,1,1]
=> 3
[3,3]
=> 2
[3,2,1]
=> 3
[3,1,1,1]
=> 3
[2,2,2]
=> 2
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 2
[5,2]
=> 2
[5,1,1]
=> 3
[4,3]
=> 2
[4,2,1]
=> 3
[4,1,1,1]
=> 4
[3,3,1]
=> 3
[3,2,2]
=> 3
[3,2,1,1]
=> 3
[3,1,1,1,1]
=> 3
[2,2,2,1]
=> 2
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 2
[6,2]
=> 2
[6,1,1]
=> 3
[5,3]
=> 2
[5,2,1]
=> 3
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000183
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St000183: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 66%●distinct values known / distinct values provided: 56%
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St000183: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 66%●distinct values known / distinct values provided: 56%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> 3
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[4,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
=> [4,4,4,4,4,4,4]
=> ? = 4
[11]
=> [[11],[]]
=> [[11],[]]
=> ?
=> ? = 1
[10,1]
=> [[10,1],[]]
=> [[10,10],[9]]
=> ?
=> ? = 2
[9,2]
=> [[9,2],[]]
=> ?
=> ?
=> ? = 2
[9,1,1]
=> [[9,1,1],[]]
=> ?
=> ?
=> ? = 3
[8,3]
=> [[8,3],[]]
=> [[8,8],[5]]
=> ?
=> ? = 2
[8,2,1]
=> [[8,2,1],[]]
=> ?
=> ?
=> ? = 3
[8,1,1,1]
=> [[8,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,4]
=> [[7,4],[]]
=> ?
=> ?
=> ? = 2
[7,3,1]
=> [[7,3,1],[]]
=> ?
=> ?
=> ? = 3
[7,2,2]
=> [[7,2,2],[]]
=> [[7,7,7],[5,5]]
=> ?
=> ? = 3
[7,2,1,1]
=> [[7,2,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,1,1,1,1]
=> [[7,1,1,1,1],[]]
=> ?
=> ?
=> ? = 5
[6,4,1]
=> [[6,4,1],[]]
=> ?
=> ?
=> ? = 3
[6,3,2]
=> [[6,3,2],[]]
=> ?
=> ?
=> ? = 3
[6,3,1,1]
=> [[6,3,1,1],[]]
=> ?
=> ?
=> ? = 4
[6,2,2,1]
=> [[6,2,2,1],[]]
=> ?
=> ?
=> ? = 4
[6,2,1,1,1]
=> [[6,2,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,4]]
=> ?
=> ? = 5
[6,1,1,1,1,1]
=> [[6,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 6
[5,2,1,1,1,1]
=> [[5,2,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,3]]
=> ?
=> ? = 5
[5,1,1,1,1,1,1]
=> [[5,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 5
[4,3,1,1,1,1]
=> [[4,3,1,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[4,2,2,1,1,1]
=> [[4,2,2,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[4,2,1,1,1,1,1]
=> [[4,2,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[4,1,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[3,3,2,1,1,1]
=> [[3,3,2,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,3,1,1,1,1,1]
=> [[3,3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2]]
=> ?
=> ? = 3
[3,2,2,2,1,1]
=> [[3,2,2,2,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,2,2,1,1,1,1]
=> [[3,2,2,1,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,2,1,1,1,1,1,1]
=> [[3,2,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[2,2,2,2,2,1]
=> [[2,2,2,2,2,1],[]]
=> [[2,2,2,2,2,2],[1]]
=> ?
=> ? = 2
[2,2,2,2,1,1,1]
=> [[2,2,2,2,1,1,1],[]]
=> ?
=> ?
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [[2,2,2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1]]
=> ?
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [[2,2,1,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1,1]]
=> ?
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1,1,1,1,1],[]]
=> ?
=> ? = 1
[12]
=> [[12],[]]
=> [[12],[]]
=> ?
=> ? = 1
[11,1]
=> [[11,1],[]]
=> ?
=> ?
=> ? = 2
[10,2]
=> [[10,2],[]]
=> [[10,10],[8]]
=> ?
=> ? = 2
[10,1,1]
=> [[10,1,1],[]]
=> ?
=> ?
=> ? = 3
[9,3]
=> [[9,3],[]]
=> ?
=> ?
=> ? = 2
[9,2,1]
=> [[9,2,1],[]]
=> ?
=> ?
=> ? = 3
[9,1,1,1]
=> [[9,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[8,4]
=> [[8,4],[]]
=> ?
=> ?
=> ? = 2
[8,3,1]
=> [[8,3,1],[]]
=> ?
=> ?
=> ? = 3
[8,2,2]
=> [[8,2,2],[]]
=> ?
=> ?
=> ? = 3
Description
The side length of the Durfee square of an integer partition.
Given a partition $\lambda = (\lambda_1,\ldots,\lambda_n)$, the Durfee square is the largest partition $(s^s)$ whose diagram fits inside the diagram of $\lambda$. In symbols, $s = \max\{ i \mid \lambda_i \geq i \}$.
This is also known as the Frobenius rank.
Matching statistic: St000875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00224: Binary words —runsort⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000875: Binary words ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Mp00224: Binary words —runsort⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000875: Binary words ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Values
[1]
=> 10 => 01 => 10 => 1
[2]
=> 100 => 001 => 100 => 1
[1,1]
=> 110 => 011 => 110 => 1
[3]
=> 1000 => 0001 => 1000 => 1
[2,1]
=> 1010 => 0011 => 1100 => 2
[1,1,1]
=> 1110 => 0111 => 1110 => 1
[4]
=> 10000 => 00001 => 10000 => 1
[3,1]
=> 10010 => 00011 => 11000 => 2
[2,2]
=> 1100 => 0011 => 1100 => 2
[2,1,1]
=> 10110 => 00111 => 11100 => 2
[1,1,1,1]
=> 11110 => 01111 => 11110 => 1
[5]
=> 100000 => 000001 => 100000 => 1
[4,1]
=> 100010 => 000011 => 110000 => 2
[3,2]
=> 10100 => 00011 => 11000 => 2
[3,1,1]
=> 100110 => 000111 => 111000 => 3
[2,2,1]
=> 11010 => 00111 => 11100 => 2
[2,1,1,1]
=> 101110 => 001111 => 111100 => 2
[1,1,1,1,1]
=> 111110 => 011111 => 111110 => 1
[6]
=> 1000000 => 0000001 => 1000000 => 1
[5,1]
=> 1000010 => 0000011 => 1100000 => 2
[4,2]
=> 100100 => 000011 => 110000 => 2
[4,1,1]
=> 1000110 => 0000111 => 1110000 => 3
[3,3]
=> 11000 => 00011 => 11000 => 2
[3,2,1]
=> 101010 => 001011 => 110100 => 3
[3,1,1,1]
=> 1001110 => 0001111 => 1111000 => 3
[2,2,2]
=> 11100 => 00111 => 11100 => 2
[2,2,1,1]
=> 110110 => 001111 => 111100 => 2
[2,1,1,1,1]
=> 1011110 => 0011111 => 1111100 => 2
[1,1,1,1,1,1]
=> 1111110 => 0111111 => 1111110 => 1
[7]
=> 10000000 => 00000001 => 10000000 => 1
[6,1]
=> 10000010 => 00000011 => 11000000 => 2
[5,2]
=> 1000100 => 0000011 => 1100000 => 2
[5,1,1]
=> 10000110 => 00000111 => 11100000 => 3
[4,3]
=> 101000 => 000011 => 110000 => 2
[4,2,1]
=> 1001010 => 0001011 => 1101000 => 3
[4,1,1,1]
=> 10001110 => 00001111 => 11110000 => 4
[3,3,1]
=> 110010 => 000111 => 111000 => 3
[3,2,2]
=> 101100 => 000111 => 111000 => 3
[3,2,1,1]
=> 1010110 => 0010111 => 1110100 => 3
[3,1,1,1,1]
=> 10011110 => 00011111 => 11111000 => 3
[2,2,2,1]
=> 111010 => 001111 => 111100 => 2
[2,2,1,1,1]
=> 1101110 => 0011111 => 1111100 => 2
[2,1,1,1,1,1]
=> 10111110 => 00111111 => 11111100 => 2
[1,1,1,1,1,1,1]
=> 11111110 => 01111111 => 11111110 => 1
[8]
=> 100000000 => 000000001 => 100000000 => 1
[7,1]
=> 100000010 => 000000011 => 110000000 => 2
[6,2]
=> 10000100 => 00000011 => 11000000 => 2
[6,1,1]
=> 100000110 => 000000111 => 111000000 => 3
[5,3]
=> 1001000 => 0000011 => 1100000 => 2
[5,2,1]
=> 10001010 => 00001011 => 11010000 => 3
[8,1]
=> 1000000010 => 0000000011 => 1100000000 => ? = 2
[7,1,1]
=> 1000000110 => 0000000111 => 1110000000 => ? = 3
[6,1,1,1]
=> 1000001110 => 0000001111 => 1111000000 => ? = 4
[4,1,1,1,1,1]
=> 1000111110 => 0000111111 => 1111110000 => ? = 4
[3,1,1,1,1,1,1]
=> 1001111110 => 0001111111 => 1111111000 => ? = 3
[2,1,1,1,1,1,1,1]
=> 1011111110 => 0011111111 => 1111111100 => ? = 2
[9,1]
=> 10000000010 => 00000000011 => 11000000000 => ? = 2
[8,2]
=> 1000000100 => 0000000011 => 1100000000 => ? = 2
[8,1,1]
=> 10000000110 => 00000000111 => 11100000000 => ? = 3
[7,2,1]
=> 1000001010 => 0000001011 => 1101000000 => ? = 3
[7,1,1,1]
=> 10000001110 => 00000001111 => 11110000000 => ? = 4
[6,2,1,1]
=> 1000010110 => 0000010111 => 1110100000 => ? = 4
[6,1,1,1,1]
=> 10000011110 => 00000011111 => 11111000000 => ? = 5
[5,1,1,1,1,1]
=> 10000111110 => 00000111111 => 11111100000 => ? = 5
[4,2,1,1,1,1]
=> 1001011110 => 0001011111 => 1111101000 => ? = 4
[4,1,1,1,1,1,1]
=> 10001111110 => 00001111111 => 11111110000 => ? = 4
[3,2,1,1,1,1,1]
=> 1010111110 => 0010111111 => 1111110100 => ? = 3
[3,1,1,1,1,1,1,1]
=> 10011111110 => 00011111111 => 11111111000 => ? = 3
[2,2,1,1,1,1,1,1]
=> 1101111110 => 0011111111 => 1111111100 => ? = 2
[2,1,1,1,1,1,1,1,1]
=> 10111111110 => 00111111111 => 11111111100 => ? = 2
[11]
=> 100000000000 => ? => ? => ? = 1
[10,1]
=> 100000000010 => ? => ? => ? = 2
[9,2]
=> 10000000100 => 00000000011 => 11000000000 => ? = 2
[9,1,1]
=> 100000000110 => ? => ? => ? = 3
[8,3]
=> 1000001000 => ? => ? => ? = 2
[8,2,1]
=> 10000001010 => 00000001011 => 11010000000 => ? = 3
[8,1,1,1]
=> 100000001110 => ? => ? => ? = 4
[7,3,1]
=> 1000010010 => ? => ? => ? = 3
[7,2,2]
=> 1000001100 => ? => ? => ? = 3
[7,2,1,1]
=> 10000010110 => 00000010111 => 11101000000 => ? = 4
[7,1,1,1,1]
=> 100000011110 => ? => ? => ? = 5
[6,3,1,1]
=> 1000100110 => ? => ? => ? = 4
[6,2,2,1]
=> 1000011010 => ? => ? => ? = 4
[6,2,1,1,1]
=> 10000101110 => 00000101111 => 11110100000 => ? = 5
[6,1,1,1,1,1]
=> 100000111110 => ? => ? => ? = 6
[5,2,1,1,1,1]
=> 10001011110 => 00001011111 => 11111010000 => ? = 5
[5,1,1,1,1,1,1]
=> 100001111110 => ? => ? => ? = 5
[4,3,1,1,1,1]
=> 1010011110 => ? => ? => ? = 4
[4,2,2,1,1,1]
=> 1001101110 => ? => ? => ? = 4
[4,2,1,1,1,1,1]
=> 10010111110 => 00010111111 => 11111101000 => ? = 4
[4,1,1,1,1,1,1,1]
=> 100011111110 => ? => ? => ? = 4
[3,3,1,1,1,1,1]
=> 1100111110 => ? => ? => ? = 3
[3,2,2,1,1,1,1]
=> 1011011110 => ? => ? => ? = 3
[3,2,1,1,1,1,1,1]
=> 10101111110 => 00101111111 => 11111110100 => ? = 3
[3,1,1,1,1,1,1,1,1]
=> 100111111110 => ? => ? => ? = 3
[2,2,2,1,1,1,1,1]
=> 1110111110 => 0011111111 => 1111111100 => ? = 2
[2,2,1,1,1,1,1,1,1]
=> 11011111110 => 00111111111 => 11111111100 => ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> 101111111110 => ? => ? => ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> 111111111110 => ? => ? => ? = 1
[12]
=> 1000000000000 => ? => ? => ? = 1
Description
The semilength of the longest Dyck word in the Catalan factorisation of a binary word.
Every binary word can be written in a unique way as $(\mathcal D 0)^\ell \mathcal D (1 \mathcal D)^m$, where $\mathcal D$ is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2].
This statistic records the semilength of the longest Dyck word in this factorisation.
Matching statistic: St001924
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St001924: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 46%●distinct values known / distinct values provided: 44%
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St001924: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 46%●distinct values known / distinct values provided: 44%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> ? = 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> [[5,5,5,5],[4,4,4]]
=> [5,5,5,5]
=> ? = 4
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> [4,4]
=> 2
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,3]]
=> [4,4,4,4,4]
=> ? = 4
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[6,2,1]
=> [[6,2,1],[]]
=> [[6,6,6],[5,4]]
=> [6,6,6]
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> [[6,6,6,6],[5,5,5]]
=> [6,6,6,6]
=> ? = 4
[5,2,1,1]
=> [[5,2,1,1],[]]
=> [[5,5,5,5],[4,4,3]]
=> [5,5,5,5]
=> ? = 4
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,4]]
=> [5,5,5,5,5]
=> ? = 5
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [4,4,4,4,4,4]
=> ? = 4
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[9,1]
=> [[9,1],[]]
=> [[9,9],[8]]
=> [9,9]
=> ? = 2
[8,1,1]
=> [[8,1,1],[]]
=> [[8,8,8],[7,7]]
=> [8,8,8]
=> ? = 3
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[6,3,1]
=> [[6,3,1],[]]
=> [[6,6,6],[5,3]]
=> [6,6,6]
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> [[6,6,6],[4,4]]
=> [6,6,6]
=> ? = 3
[6,2,1,1]
=> [[6,2,1,1],[]]
=> [[6,6,6,6],[5,5,4]]
=> [6,6,6,6]
=> ? = 4
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,5]]
=> [6,6,6,6,6]
=> ? = 5
[5,3,1,1]
=> [[5,3,1,1],[]]
=> [[5,5,5,5],[4,4,2]]
=> [5,5,5,5]
=> ? = 4
[5,2,2,1]
=> [[5,2,2,1],[]]
=> [[5,5,5,5],[4,3,3]]
=> [5,5,5,5]
=> ? = 4
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,3]]
=> [5,5,5,5,5]
=> ? = 5
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,4]]
=> [5,5,5,5,5,5]
=> ? = 5
[4,3,1,1,1]
=> [[4,3,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,1]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,2,1,1]
=> [[4,2,2,1,1],[]]
=> [[4,4,4,4,4],[3,3,2,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,1,1,1,1]
=> [[4,2,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,2]]
=> [4,4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
=> [4,4,4,4,4,4,4]
=> ? = 4
[3,3,1,1,1,1]
=> [[3,3,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,2,1,1,1]
=> [[3,2,2,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,1,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,1,1,1,1,1]
=> [[3,2,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,1]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3,3]
=> ? = 3
[2,1,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2,2]
=> ? = 2
[11]
=> [[11],[]]
=> [[11],[]]
=> ?
=> ? = 1
[10,1]
=> [[10,1],[]]
=> [[10,10],[9]]
=> ?
=> ? = 2
[9,2]
=> [[9,2],[]]
=> ?
=> ?
=> ? = 2
[9,1,1]
=> [[9,1,1],[]]
=> ?
=> ?
=> ? = 3
[8,3]
=> [[8,3],[]]
=> [[8,8],[5]]
=> ?
=> ? = 2
[8,2,1]
=> [[8,2,1],[]]
=> ?
=> ?
=> ? = 3
[8,1,1,1]
=> [[8,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,4]
=> [[7,4],[]]
=> ?
=> ?
=> ? = 2
[7,3,1]
=> [[7,3,1],[]]
=> ?
=> ?
=> ? = 3
[7,2,2]
=> [[7,2,2],[]]
=> [[7,7,7],[5,5]]
=> ?
=> ? = 3
[7,2,1,1]
=> [[7,2,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,1,1,1,1]
=> [[7,1,1,1,1],[]]
=> ?
=> ?
=> ? = 5
[6,4,1]
=> [[6,4,1],[]]
=> ?
=> ?
=> ? = 3
[6,3,2]
=> [[6,3,2],[]]
=> ?
=> ?
=> ? = 3
[6,3,1,1]
=> [[6,3,1,1],[]]
=> ?
=> ?
=> ? = 4
[6,2,2,1]
=> [[6,2,2,1],[]]
=> ?
=> ?
=> ? = 4
Description
The number of cells in an integer partition whose arm and leg length coincide.
Matching statistic: St000783
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 44%
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 44%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> ? = 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> ? = 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> [[5,5,5,5],[4,4,4]]
=> [5,5,5,5]
=> ? = 4
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> [4,4]
=> 2
[4,3,1]
=> [[4,3,1],[]]
=> [[4,4,4],[3,1]]
=> [4,4,4]
=> 3
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,3]]
=> [4,4,4,4,4]
=> ? = 4
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[8,1]
=> [[8,1],[]]
=> [[8,8],[7]]
=> [8,8]
=> ? = 2
[7,2]
=> [[7,2],[]]
=> [[7,7],[5]]
=> [7,7]
=> ? = 2
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[6,2,1]
=> [[6,2,1],[]]
=> [[6,6,6],[5,4]]
=> [6,6,6]
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> [[6,6,6,6],[5,5,5]]
=> [6,6,6,6]
=> ? = 4
[5,2,1,1]
=> [[5,2,1,1],[]]
=> [[5,5,5,5],[4,4,3]]
=> [5,5,5,5]
=> ? = 4
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,4]]
=> [5,5,5,5,5]
=> ? = 5
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [4,4,4,4,4,4]
=> ? = 4
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[2,2,1,1,1,1,1]
=> [[2,2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2]
=> ? = 2
[9,1]
=> [[9,1],[]]
=> [[9,9],[8]]
=> [9,9]
=> ? = 2
[8,2]
=> [[8,2],[]]
=> [[8,8],[6]]
=> [8,8]
=> ? = 2
[8,1,1]
=> [[8,1,1],[]]
=> [[8,8,8],[7,7]]
=> [8,8,8]
=> ? = 3
[7,3]
=> [[7,3],[]]
=> [[7,7],[4]]
=> [7,7]
=> ? = 2
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[6,3,1]
=> [[6,3,1],[]]
=> [[6,6,6],[5,3]]
=> [6,6,6]
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> [[6,6,6],[4,4]]
=> [6,6,6]
=> ? = 3
[6,2,1,1]
=> [[6,2,1,1],[]]
=> [[6,6,6,6],[5,5,4]]
=> [6,6,6,6]
=> ? = 4
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,5]]
=> [6,6,6,6,6]
=> ? = 5
[5,3,1,1]
=> [[5,3,1,1],[]]
=> [[5,5,5,5],[4,4,2]]
=> [5,5,5,5]
=> ? = 4
[5,2,2,1]
=> [[5,2,2,1],[]]
=> [[5,5,5,5],[4,3,3]]
=> [5,5,5,5]
=> ? = 4
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,3]]
=> [5,5,5,5,5]
=> ? = 5
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,4]]
=> [5,5,5,5,5,5]
=> ? = 5
[4,3,1,1,1]
=> [[4,3,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,1]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,2,1,1]
=> [[4,2,2,1,1],[]]
=> [[4,4,4,4,4],[3,3,2,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,1,1,1,1]
=> [[4,2,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,2]]
=> [4,4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
=> [4,4,4,4,4,4,4]
=> ? = 4
[3,3,1,1,1,1]
=> [[3,3,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,2,1,1,1]
=> [[3,2,2,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,1,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,1,1,1,1,1]
=> [[3,2,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,1]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3,3]
=> ? = 3
[2,2,2,1,1,1,1]
=> [[2,2,2,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [[2,2,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2,2]
=> ? = 2
[11]
=> [[11],[]]
=> [[11],[]]
=> ?
=> ? = 1
[10,1]
=> [[10,1],[]]
=> [[10,10],[9]]
=> ?
=> ? = 2
[9,2]
=> [[9,2],[]]
=> ?
=> ?
=> ? = 2
[9,1,1]
=> [[9,1,1],[]]
=> ?
=> ?
=> ? = 3
[8,3]
=> [[8,3],[]]
=> [[8,8],[5]]
=> ?
=> ? = 2
[8,2,1]
=> [[8,2,1],[]]
=> ?
=> ?
=> ? = 3
Description
The side length of the largest staircase partition fitting into a partition.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Matching statistic: St001432
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 33%
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 33%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> ? = 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> ? = 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> ? = 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> ? = 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> ? = 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> [[5,5,5,5],[4,4,4]]
=> [5,5,5,5]
=> ? = 4
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> [4,4]
=> 2
[4,3,1]
=> [[4,3,1],[]]
=> [[4,4,4],[3,1]]
=> [4,4,4]
=> 3
[4,2,2]
=> [[4,2,2],[]]
=> [[4,4,4],[2,2]]
=> [4,4,4]
=> 3
[4,2,1,1]
=> [[4,2,1,1],[]]
=> [[4,4,4,4],[3,3,2]]
=> [4,4,4,4]
=> ? = 4
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,3]]
=> [4,4,4,4,4]
=> ? = 4
[3,3,2]
=> [[3,3,2],[]]
=> [[3,3,3],[1]]
=> [3,3,3]
=> 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> [[3,3,3,3],[2,2]]
=> [3,3,3,3]
=> 3
[3,2,2,1]
=> [[3,2,2,1],[]]
=> [[3,3,3,3],[2,1,1]]
=> [3,3,3,3]
=> 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,1]]
=> [3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[8,1]
=> [[8,1],[]]
=> [[8,8],[7]]
=> [8,8]
=> ? = 2
[7,2]
=> [[7,2],[]]
=> [[7,7],[5]]
=> [7,7]
=> ? = 2
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[6,2,1]
=> [[6,2,1],[]]
=> [[6,6,6],[5,4]]
=> [6,6,6]
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> [[6,6,6,6],[5,5,5]]
=> [6,6,6,6]
=> ? = 4
[5,3,1]
=> [[5,3,1],[]]
=> [[5,5,5],[4,2]]
=> [5,5,5]
=> ? = 3
[5,2,2]
=> [[5,2,2],[]]
=> [[5,5,5],[3,3]]
=> [5,5,5]
=> ? = 3
[5,2,1,1]
=> [[5,2,1,1],[]]
=> [[5,5,5,5],[4,4,3]]
=> [5,5,5,5]
=> ? = 4
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,4]]
=> [5,5,5,5,5]
=> ? = 5
[4,3,1,1]
=> [[4,3,1,1],[]]
=> [[4,4,4,4],[3,3,1]]
=> [4,4,4,4]
=> ? = 4
[4,2,2,1]
=> [[4,2,2,1],[]]
=> [[4,4,4,4],[3,2,2]]
=> [4,4,4,4]
=> ? = 4
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [4,4,4,4,4,4]
=> ? = 4
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2]]
=> [3,3,3,3,3]
=> ? = 3
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> [[3,3,3,3,3],[2,2,1,1]]
=> [3,3,3,3,3]
=> ? = 3
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[2,2,1,1,1,1,1]
=> [[2,2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2]
=> ? = 2
[9,1]
=> [[9,1],[]]
=> [[9,9],[8]]
=> [9,9]
=> ? = 2
[8,2]
=> [[8,2],[]]
=> [[8,8],[6]]
=> [8,8]
=> ? = 2
[8,1,1]
=> [[8,1,1],[]]
=> [[8,8,8],[7,7]]
=> [8,8,8]
=> ? = 3
[7,3]
=> [[7,3],[]]
=> [[7,7],[4]]
=> [7,7]
=> ? = 2
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[6,3,1]
=> [[6,3,1],[]]
=> [[6,6,6],[5,3]]
=> [6,6,6]
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> [[6,6,6],[4,4]]
=> [6,6,6]
=> ? = 3
[6,2,1,1]
=> [[6,2,1,1],[]]
=> [[6,6,6,6],[5,5,4]]
=> [6,6,6,6]
=> ? = 4
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,5]]
=> [6,6,6,6,6]
=> ? = 5
[5,4,1]
=> [[5,4,1],[]]
=> [[5,5,5],[4,1]]
=> [5,5,5]
=> ? = 3
[5,3,2]
=> [[5,3,2],[]]
=> [[5,5,5],[3,2]]
=> [5,5,5]
=> ? = 3
[5,3,1,1]
=> [[5,3,1,1],[]]
=> [[5,5,5,5],[4,4,2]]
=> [5,5,5,5]
=> ? = 4
[5,2,2,1]
=> [[5,2,2,1],[]]
=> [[5,5,5,5],[4,3,3]]
=> [5,5,5,5]
=> ? = 4
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,3]]
=> [5,5,5,5,5]
=> ? = 5
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,4]]
=> [5,5,5,5,5,5]
=> ? = 5
[4,4,1,1]
=> [[4,4,1,1],[]]
=> [[4,4,4,4],[3,3]]
=> [4,4,4,4]
=> ? = 4
[4,3,2,1]
=> [[4,3,2,1],[]]
=> [[4,4,4,4],[3,2,1]]
=> [4,4,4,4]
=> ? = 4
[4,3,1,1,1]
=> [[4,3,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,1]]
=> [4,4,4,4,4]
=> ? = 4
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[7]
=> [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ? = 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 4
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ? = 1
[8]
=> [[8],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 1
[7,1]
=> [[7,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 4
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ([(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 4
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 1
[9]
=> [[9],[]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([],9)
=> ? = 1
[8,1]
=> [[8,1],[]]
=> ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[7,2]
=> [[7,2],[]]
=> ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[7,1,1]
=> [[7,1,1],[]]
=> ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9)
=> ([(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 4
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!