Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000533: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 2
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 2
[3,2]
=> 2
[3,1,1]
=> 3
[2,2,1]
=> 2
[2,1,1,1]
=> 2
[1,1,1,1,1]
=> 1
[6]
=> 1
[5,1]
=> 2
[4,2]
=> 2
[4,1,1]
=> 3
[3,3]
=> 2
[3,2,1]
=> 3
[3,1,1,1]
=> 3
[2,2,2]
=> 2
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 2
[5,2]
=> 2
[5,1,1]
=> 3
[4,3]
=> 2
[4,2,1]
=> 3
[4,1,1,1]
=> 4
[3,3,1]
=> 3
[3,2,2]
=> 3
[3,2,1,1]
=> 3
[3,1,1,1,1]
=> 3
[2,2,2,1]
=> 2
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 2
[6,2]
=> 2
[6,1,1]
=> 3
[5,3]
=> 2
[5,2,1]
=> 3
Description
The minimum of the number of parts and the size of the first part of an integer partition. This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000183
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00189: Skew partitions rotateSkew partitions
Mp00182: Skew partitions outer shapeInteger partitions
St000183: Integer partitions ⟶ ℤResult quality: 56% values known / values provided: 66%distinct values known / distinct values provided: 56%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> 3
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[4,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
=> [4,4,4,4,4,4,4]
=> ? = 4
[11]
=> [[11],[]]
=> [[11],[]]
=> ?
=> ? = 1
[10,1]
=> [[10,1],[]]
=> [[10,10],[9]]
=> ?
=> ? = 2
[9,2]
=> [[9,2],[]]
=> ?
=> ?
=> ? = 2
[9,1,1]
=> [[9,1,1],[]]
=> ?
=> ?
=> ? = 3
[8,3]
=> [[8,3],[]]
=> [[8,8],[5]]
=> ?
=> ? = 2
[8,2,1]
=> [[8,2,1],[]]
=> ?
=> ?
=> ? = 3
[8,1,1,1]
=> [[8,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,4]
=> [[7,4],[]]
=> ?
=> ?
=> ? = 2
[7,3,1]
=> [[7,3,1],[]]
=> ?
=> ?
=> ? = 3
[7,2,2]
=> [[7,2,2],[]]
=> [[7,7,7],[5,5]]
=> ?
=> ? = 3
[7,2,1,1]
=> [[7,2,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,1,1,1,1]
=> [[7,1,1,1,1],[]]
=> ?
=> ?
=> ? = 5
[6,4,1]
=> [[6,4,1],[]]
=> ?
=> ?
=> ? = 3
[6,3,2]
=> [[6,3,2],[]]
=> ?
=> ?
=> ? = 3
[6,3,1,1]
=> [[6,3,1,1],[]]
=> ?
=> ?
=> ? = 4
[6,2,2,1]
=> [[6,2,2,1],[]]
=> ?
=> ?
=> ? = 4
[6,2,1,1,1]
=> [[6,2,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,4]]
=> ?
=> ? = 5
[6,1,1,1,1,1]
=> [[6,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 6
[5,2,1,1,1,1]
=> [[5,2,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,3]]
=> ?
=> ? = 5
[5,1,1,1,1,1,1]
=> [[5,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 5
[4,3,1,1,1,1]
=> [[4,3,1,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[4,2,2,1,1,1]
=> [[4,2,2,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[4,2,1,1,1,1,1]
=> [[4,2,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[4,1,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[3,3,2,1,1,1]
=> [[3,3,2,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,3,1,1,1,1,1]
=> [[3,3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2]]
=> ?
=> ? = 3
[3,2,2,2,1,1]
=> [[3,2,2,2,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,2,2,1,1,1,1]
=> [[3,2,2,1,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,2,1,1,1,1,1,1]
=> [[3,2,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 3
[2,2,2,2,2,1]
=> [[2,2,2,2,2,1],[]]
=> [[2,2,2,2,2,2],[1]]
=> ?
=> ? = 2
[2,2,2,2,1,1,1]
=> [[2,2,2,2,1,1,1],[]]
=> ?
=> ?
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [[2,2,2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1]]
=> ?
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [[2,2,1,1,1,1,1,1,1],[]]
=> ?
=> ?
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1,1]]
=> ?
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1,1,1,1,1],[]]
=> ?
=> ? = 1
[12]
=> [[12],[]]
=> [[12],[]]
=> ?
=> ? = 1
[11,1]
=> [[11,1],[]]
=> ?
=> ?
=> ? = 2
[10,2]
=> [[10,2],[]]
=> [[10,10],[8]]
=> ?
=> ? = 2
[10,1,1]
=> [[10,1,1],[]]
=> ?
=> ?
=> ? = 3
[9,3]
=> [[9,3],[]]
=> ?
=> ?
=> ? = 2
[9,2,1]
=> [[9,2,1],[]]
=> ?
=> ?
=> ? = 3
[9,1,1,1]
=> [[9,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[8,4]
=> [[8,4],[]]
=> ?
=> ?
=> ? = 2
[8,3,1]
=> [[8,3,1],[]]
=> ?
=> ?
=> ? = 3
[8,2,2]
=> [[8,2,2],[]]
=> ?
=> ?
=> ? = 3
Description
The side length of the Durfee square of an integer partition. Given a partition $\lambda = (\lambda_1,\ldots,\lambda_n)$, the Durfee square is the largest partition $(s^s)$ whose diagram fits inside the diagram of $\lambda$. In symbols, $s = \max\{ i \mid \lambda_i \geq i \}$. This is also known as the Frobenius rank.
Mp00095: Integer partitions to binary wordBinary words
Mp00224: Binary words runsortBinary words
Mp00104: Binary words reverseBinary words
St000875: Binary words ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 67%
Values
[1]
=> 10 => 01 => 10 => 1
[2]
=> 100 => 001 => 100 => 1
[1,1]
=> 110 => 011 => 110 => 1
[3]
=> 1000 => 0001 => 1000 => 1
[2,1]
=> 1010 => 0011 => 1100 => 2
[1,1,1]
=> 1110 => 0111 => 1110 => 1
[4]
=> 10000 => 00001 => 10000 => 1
[3,1]
=> 10010 => 00011 => 11000 => 2
[2,2]
=> 1100 => 0011 => 1100 => 2
[2,1,1]
=> 10110 => 00111 => 11100 => 2
[1,1,1,1]
=> 11110 => 01111 => 11110 => 1
[5]
=> 100000 => 000001 => 100000 => 1
[4,1]
=> 100010 => 000011 => 110000 => 2
[3,2]
=> 10100 => 00011 => 11000 => 2
[3,1,1]
=> 100110 => 000111 => 111000 => 3
[2,2,1]
=> 11010 => 00111 => 11100 => 2
[2,1,1,1]
=> 101110 => 001111 => 111100 => 2
[1,1,1,1,1]
=> 111110 => 011111 => 111110 => 1
[6]
=> 1000000 => 0000001 => 1000000 => 1
[5,1]
=> 1000010 => 0000011 => 1100000 => 2
[4,2]
=> 100100 => 000011 => 110000 => 2
[4,1,1]
=> 1000110 => 0000111 => 1110000 => 3
[3,3]
=> 11000 => 00011 => 11000 => 2
[3,2,1]
=> 101010 => 001011 => 110100 => 3
[3,1,1,1]
=> 1001110 => 0001111 => 1111000 => 3
[2,2,2]
=> 11100 => 00111 => 11100 => 2
[2,2,1,1]
=> 110110 => 001111 => 111100 => 2
[2,1,1,1,1]
=> 1011110 => 0011111 => 1111100 => 2
[1,1,1,1,1,1]
=> 1111110 => 0111111 => 1111110 => 1
[7]
=> 10000000 => 00000001 => 10000000 => 1
[6,1]
=> 10000010 => 00000011 => 11000000 => 2
[5,2]
=> 1000100 => 0000011 => 1100000 => 2
[5,1,1]
=> 10000110 => 00000111 => 11100000 => 3
[4,3]
=> 101000 => 000011 => 110000 => 2
[4,2,1]
=> 1001010 => 0001011 => 1101000 => 3
[4,1,1,1]
=> 10001110 => 00001111 => 11110000 => 4
[3,3,1]
=> 110010 => 000111 => 111000 => 3
[3,2,2]
=> 101100 => 000111 => 111000 => 3
[3,2,1,1]
=> 1010110 => 0010111 => 1110100 => 3
[3,1,1,1,1]
=> 10011110 => 00011111 => 11111000 => 3
[2,2,2,1]
=> 111010 => 001111 => 111100 => 2
[2,2,1,1,1]
=> 1101110 => 0011111 => 1111100 => 2
[2,1,1,1,1,1]
=> 10111110 => 00111111 => 11111100 => 2
[1,1,1,1,1,1,1]
=> 11111110 => 01111111 => 11111110 => 1
[8]
=> 100000000 => 000000001 => 100000000 => 1
[7,1]
=> 100000010 => 000000011 => 110000000 => 2
[6,2]
=> 10000100 => 00000011 => 11000000 => 2
[6,1,1]
=> 100000110 => 000000111 => 111000000 => 3
[5,3]
=> 1001000 => 0000011 => 1100000 => 2
[5,2,1]
=> 10001010 => 00001011 => 11010000 => 3
[8,1]
=> 1000000010 => 0000000011 => 1100000000 => ? = 2
[7,1,1]
=> 1000000110 => 0000000111 => 1110000000 => ? = 3
[6,1,1,1]
=> 1000001110 => 0000001111 => 1111000000 => ? = 4
[4,1,1,1,1,1]
=> 1000111110 => 0000111111 => 1111110000 => ? = 4
[3,1,1,1,1,1,1]
=> 1001111110 => 0001111111 => 1111111000 => ? = 3
[2,1,1,1,1,1,1,1]
=> 1011111110 => 0011111111 => 1111111100 => ? = 2
[9,1]
=> 10000000010 => 00000000011 => 11000000000 => ? = 2
[8,2]
=> 1000000100 => 0000000011 => 1100000000 => ? = 2
[8,1,1]
=> 10000000110 => 00000000111 => 11100000000 => ? = 3
[7,2,1]
=> 1000001010 => 0000001011 => 1101000000 => ? = 3
[7,1,1,1]
=> 10000001110 => 00000001111 => 11110000000 => ? = 4
[6,2,1,1]
=> 1000010110 => 0000010111 => 1110100000 => ? = 4
[6,1,1,1,1]
=> 10000011110 => 00000011111 => 11111000000 => ? = 5
[5,1,1,1,1,1]
=> 10000111110 => 00000111111 => 11111100000 => ? = 5
[4,2,1,1,1,1]
=> 1001011110 => 0001011111 => 1111101000 => ? = 4
[4,1,1,1,1,1,1]
=> 10001111110 => 00001111111 => 11111110000 => ? = 4
[3,2,1,1,1,1,1]
=> 1010111110 => 0010111111 => 1111110100 => ? = 3
[3,1,1,1,1,1,1,1]
=> 10011111110 => 00011111111 => 11111111000 => ? = 3
[2,2,1,1,1,1,1,1]
=> 1101111110 => 0011111111 => 1111111100 => ? = 2
[2,1,1,1,1,1,1,1,1]
=> 10111111110 => 00111111111 => 11111111100 => ? = 2
[11]
=> 100000000000 => ? => ? => ? = 1
[10,1]
=> 100000000010 => ? => ? => ? = 2
[9,2]
=> 10000000100 => 00000000011 => 11000000000 => ? = 2
[9,1,1]
=> 100000000110 => ? => ? => ? = 3
[8,3]
=> 1000001000 => ? => ? => ? = 2
[8,2,1]
=> 10000001010 => 00000001011 => 11010000000 => ? = 3
[8,1,1,1]
=> 100000001110 => ? => ? => ? = 4
[7,3,1]
=> 1000010010 => ? => ? => ? = 3
[7,2,2]
=> 1000001100 => ? => ? => ? = 3
[7,2,1,1]
=> 10000010110 => 00000010111 => 11101000000 => ? = 4
[7,1,1,1,1]
=> 100000011110 => ? => ? => ? = 5
[6,3,1,1]
=> 1000100110 => ? => ? => ? = 4
[6,2,2,1]
=> 1000011010 => ? => ? => ? = 4
[6,2,1,1,1]
=> 10000101110 => 00000101111 => 11110100000 => ? = 5
[6,1,1,1,1,1]
=> 100000111110 => ? => ? => ? = 6
[5,2,1,1,1,1]
=> 10001011110 => 00001011111 => 11111010000 => ? = 5
[5,1,1,1,1,1,1]
=> 100001111110 => ? => ? => ? = 5
[4,3,1,1,1,1]
=> 1010011110 => ? => ? => ? = 4
[4,2,2,1,1,1]
=> 1001101110 => ? => ? => ? = 4
[4,2,1,1,1,1,1]
=> 10010111110 => 00010111111 => 11111101000 => ? = 4
[4,1,1,1,1,1,1,1]
=> 100011111110 => ? => ? => ? = 4
[3,3,1,1,1,1,1]
=> 1100111110 => ? => ? => ? = 3
[3,2,2,1,1,1,1]
=> 1011011110 => ? => ? => ? = 3
[3,2,1,1,1,1,1,1]
=> 10101111110 => 00101111111 => 11111110100 => ? = 3
[3,1,1,1,1,1,1,1,1]
=> 100111111110 => ? => ? => ? = 3
[2,2,2,1,1,1,1,1]
=> 1110111110 => 0011111111 => 1111111100 => ? = 2
[2,2,1,1,1,1,1,1,1]
=> 11011111110 => 00111111111 => 11111111100 => ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> 101111111110 => ? => ? => ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> 111111111110 => ? => ? => ? = 1
[12]
=> 1000000000000 => ? => ? => ? = 1
Description
The semilength of the longest Dyck word in the Catalan factorisation of a binary word. Every binary word can be written in a unique way as $(\mathcal D 0)^\ell \mathcal D (1 \mathcal D)^m$, where $\mathcal D$ is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2]. This statistic records the semilength of the longest Dyck word in this factorisation.
Matching statistic: St001924
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00189: Skew partitions rotateSkew partitions
Mp00182: Skew partitions outer shapeInteger partitions
St001924: Integer partitions ⟶ ℤResult quality: 44% values known / values provided: 46%distinct values known / distinct values provided: 44%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> ? = 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> [[5,5,5,5],[4,4,4]]
=> [5,5,5,5]
=> ? = 4
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> [4,4]
=> 2
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,3]]
=> [4,4,4,4,4]
=> ? = 4
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[6,2,1]
=> [[6,2,1],[]]
=> [[6,6,6],[5,4]]
=> [6,6,6]
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> [[6,6,6,6],[5,5,5]]
=> [6,6,6,6]
=> ? = 4
[5,2,1,1]
=> [[5,2,1,1],[]]
=> [[5,5,5,5],[4,4,3]]
=> [5,5,5,5]
=> ? = 4
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,4]]
=> [5,5,5,5,5]
=> ? = 5
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [4,4,4,4,4,4]
=> ? = 4
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[9,1]
=> [[9,1],[]]
=> [[9,9],[8]]
=> [9,9]
=> ? = 2
[8,1,1]
=> [[8,1,1],[]]
=> [[8,8,8],[7,7]]
=> [8,8,8]
=> ? = 3
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[6,3,1]
=> [[6,3,1],[]]
=> [[6,6,6],[5,3]]
=> [6,6,6]
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> [[6,6,6],[4,4]]
=> [6,6,6]
=> ? = 3
[6,2,1,1]
=> [[6,2,1,1],[]]
=> [[6,6,6,6],[5,5,4]]
=> [6,6,6,6]
=> ? = 4
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,5]]
=> [6,6,6,6,6]
=> ? = 5
[5,3,1,1]
=> [[5,3,1,1],[]]
=> [[5,5,5,5],[4,4,2]]
=> [5,5,5,5]
=> ? = 4
[5,2,2,1]
=> [[5,2,2,1],[]]
=> [[5,5,5,5],[4,3,3]]
=> [5,5,5,5]
=> ? = 4
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,3]]
=> [5,5,5,5,5]
=> ? = 5
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,4]]
=> [5,5,5,5,5,5]
=> ? = 5
[4,3,1,1,1]
=> [[4,3,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,1]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,2,1,1]
=> [[4,2,2,1,1],[]]
=> [[4,4,4,4,4],[3,3,2,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,1,1,1,1]
=> [[4,2,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,2]]
=> [4,4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
=> [4,4,4,4,4,4,4]
=> ? = 4
[3,3,1,1,1,1]
=> [[3,3,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,2,1,1,1]
=> [[3,2,2,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,1,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,1,1,1,1,1]
=> [[3,2,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,1]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3,3]
=> ? = 3
[2,1,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2,2]
=> ? = 2
[11]
=> [[11],[]]
=> [[11],[]]
=> ?
=> ? = 1
[10,1]
=> [[10,1],[]]
=> [[10,10],[9]]
=> ?
=> ? = 2
[9,2]
=> [[9,2],[]]
=> ?
=> ?
=> ? = 2
[9,1,1]
=> [[9,1,1],[]]
=> ?
=> ?
=> ? = 3
[8,3]
=> [[8,3],[]]
=> [[8,8],[5]]
=> ?
=> ? = 2
[8,2,1]
=> [[8,2,1],[]]
=> ?
=> ?
=> ? = 3
[8,1,1,1]
=> [[8,1,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,4]
=> [[7,4],[]]
=> ?
=> ?
=> ? = 2
[7,3,1]
=> [[7,3,1],[]]
=> ?
=> ?
=> ? = 3
[7,2,2]
=> [[7,2,2],[]]
=> [[7,7,7],[5,5]]
=> ?
=> ? = 3
[7,2,1,1]
=> [[7,2,1,1],[]]
=> ?
=> ?
=> ? = 4
[7,1,1,1,1]
=> [[7,1,1,1,1],[]]
=> ?
=> ?
=> ? = 5
[6,4,1]
=> [[6,4,1],[]]
=> ?
=> ?
=> ? = 3
[6,3,2]
=> [[6,3,2],[]]
=> ?
=> ?
=> ? = 3
[6,3,1,1]
=> [[6,3,1,1],[]]
=> ?
=> ?
=> ? = 4
[6,2,2,1]
=> [[6,2,2,1],[]]
=> ?
=> ?
=> ? = 4
Description
The number of cells in an integer partition whose arm and leg length coincide.
Matching statistic: St000783
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00189: Skew partitions rotateSkew partitions
Mp00182: Skew partitions outer shapeInteger partitions
St000783: Integer partitions ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 44%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> ? = 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> ? = 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> [[5,5,5,5],[4,4,4]]
=> [5,5,5,5]
=> ? = 4
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> [4,4]
=> 2
[4,3,1]
=> [[4,3,1],[]]
=> [[4,4,4],[3,1]]
=> [4,4,4]
=> 3
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,3]]
=> [4,4,4,4,4]
=> ? = 4
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[8,1]
=> [[8,1],[]]
=> [[8,8],[7]]
=> [8,8]
=> ? = 2
[7,2]
=> [[7,2],[]]
=> [[7,7],[5]]
=> [7,7]
=> ? = 2
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[6,2,1]
=> [[6,2,1],[]]
=> [[6,6,6],[5,4]]
=> [6,6,6]
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> [[6,6,6,6],[5,5,5]]
=> [6,6,6,6]
=> ? = 4
[5,2,1,1]
=> [[5,2,1,1],[]]
=> [[5,5,5,5],[4,4,3]]
=> [5,5,5,5]
=> ? = 4
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,4]]
=> [5,5,5,5,5]
=> ? = 5
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [4,4,4,4,4,4]
=> ? = 4
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[2,2,1,1,1,1,1]
=> [[2,2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2]
=> ? = 2
[9,1]
=> [[9,1],[]]
=> [[9,9],[8]]
=> [9,9]
=> ? = 2
[8,2]
=> [[8,2],[]]
=> [[8,8],[6]]
=> [8,8]
=> ? = 2
[8,1,1]
=> [[8,1,1],[]]
=> [[8,8,8],[7,7]]
=> [8,8,8]
=> ? = 3
[7,3]
=> [[7,3],[]]
=> [[7,7],[4]]
=> [7,7]
=> ? = 2
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[6,3,1]
=> [[6,3,1],[]]
=> [[6,6,6],[5,3]]
=> [6,6,6]
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> [[6,6,6],[4,4]]
=> [6,6,6]
=> ? = 3
[6,2,1,1]
=> [[6,2,1,1],[]]
=> [[6,6,6,6],[5,5,4]]
=> [6,6,6,6]
=> ? = 4
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,5]]
=> [6,6,6,6,6]
=> ? = 5
[5,3,1,1]
=> [[5,3,1,1],[]]
=> [[5,5,5,5],[4,4,2]]
=> [5,5,5,5]
=> ? = 4
[5,2,2,1]
=> [[5,2,2,1],[]]
=> [[5,5,5,5],[4,3,3]]
=> [5,5,5,5]
=> ? = 4
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,3]]
=> [5,5,5,5,5]
=> ? = 5
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,4]]
=> [5,5,5,5,5,5]
=> ? = 5
[4,3,1,1,1]
=> [[4,3,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,1]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,2,1,1]
=> [[4,2,2,1,1],[]]
=> [[4,4,4,4,4],[3,3,2,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,2,1,1,1,1]
=> [[4,2,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,2]]
=> [4,4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1,1]
=> [[4,1,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
=> [4,4,4,4,4,4,4]
=> ? = 4
[3,3,1,1,1,1]
=> [[3,3,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,2,1,1,1]
=> [[3,2,2,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,1,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,2,1,1,1,1,1]
=> [[3,2,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,1]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3,3]
=> ? = 3
[2,2,2,1,1,1,1]
=> [[2,2,2,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [[2,2,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2,2]
=> ? = 2
[11]
=> [[11],[]]
=> [[11],[]]
=> ?
=> ? = 1
[10,1]
=> [[10,1],[]]
=> [[10,10],[9]]
=> ?
=> ? = 2
[9,2]
=> [[9,2],[]]
=> ?
=> ?
=> ? = 2
[9,1,1]
=> [[9,1,1],[]]
=> ?
=> ?
=> ? = 3
[8,3]
=> [[8,3],[]]
=> [[8,8],[5]]
=> ?
=> ? = 2
[8,2,1]
=> [[8,2,1],[]]
=> ?
=> ?
=> ? = 3
Description
The side length of the largest staircase partition fitting into a partition. For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$. In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram. This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Matching statistic: St001432
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00189: Skew partitions rotateSkew partitions
Mp00182: Skew partitions outer shapeInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 26% values known / values provided: 26%distinct values known / distinct values provided: 33%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 1
[2]
=> [[2],[]]
=> [[2],[]]
=> [2]
=> 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[3]
=> [[3],[]]
=> [[3],[]]
=> [3]
=> 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [2,2]
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[4]
=> [[4],[]]
=> [[4],[]]
=> [4]
=> 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [3,3]
=> 2
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [2,2,2]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 1
[5]
=> [[5],[]]
=> [[5],[]]
=> [5]
=> 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [4,4]
=> 2
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [3,3]
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [3,3,3]
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [2,2,2]
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[6]
=> [[6],[]]
=> [[6],[]]
=> [6]
=> 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [5,5]
=> 2
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [4,4]
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [4,4,4]
=> 3
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> [3,3]
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [3,3,3]
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [2,2,2,2]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1]
=> 1
[7]
=> [[7],[]]
=> [[7],[]]
=> [7]
=> 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [6,6]
=> 2
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [5,5]
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [5,5,5]
=> ? = 3
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [4,4]
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [4,4,4]
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [4,4,4,4]
=> ? = 4
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [3,3,3]
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [3,3,3]
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [3,3,3,3]
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [3,3,3,3,3]
=> ? = 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [2,2,2,2]
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [2,2,2,2,2]
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2]
=> 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> [1,1,1,1,1,1,1]
=> 1
[8]
=> [[8],[]]
=> [[8],[]]
=> [8]
=> 1
[7,1]
=> [[7,1],[]]
=> [[7,7],[6]]
=> [7,7]
=> ? = 2
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [6,6]
=> 2
[6,1,1]
=> [[6,1,1],[]]
=> [[6,6,6],[5,5]]
=> [6,6,6]
=> ? = 3
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [5,5]
=> 2
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [5,5,5]
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> [[5,5,5,5],[4,4,4]]
=> [5,5,5,5]
=> ? = 4
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> [4,4]
=> 2
[4,3,1]
=> [[4,3,1],[]]
=> [[4,4,4],[3,1]]
=> [4,4,4]
=> 3
[4,2,2]
=> [[4,2,2],[]]
=> [[4,4,4],[2,2]]
=> [4,4,4]
=> 3
[4,2,1,1]
=> [[4,2,1,1],[]]
=> [[4,4,4,4],[3,3,2]]
=> [4,4,4,4]
=> ? = 4
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,3]]
=> [4,4,4,4,4]
=> ? = 4
[3,3,2]
=> [[3,3,2],[]]
=> [[3,3,3],[1]]
=> [3,3,3]
=> 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> [[3,3,3,3],[2,2]]
=> [3,3,3,3]
=> 3
[3,2,2,1]
=> [[3,2,2,1],[]]
=> [[3,3,3,3],[2,1,1]]
=> [3,3,3,3]
=> 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,1]]
=> [3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [3,3,3,3,3,3]
=> ? = 3
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[8,1]
=> [[8,1],[]]
=> [[8,8],[7]]
=> [8,8]
=> ? = 2
[7,2]
=> [[7,2],[]]
=> [[7,7],[5]]
=> [7,7]
=> ? = 2
[7,1,1]
=> [[7,1,1],[]]
=> [[7,7,7],[6,6]]
=> [7,7,7]
=> ? = 3
[6,2,1]
=> [[6,2,1],[]]
=> [[6,6,6],[5,4]]
=> [6,6,6]
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> [[6,6,6,6],[5,5,5]]
=> [6,6,6,6]
=> ? = 4
[5,3,1]
=> [[5,3,1],[]]
=> [[5,5,5],[4,2]]
=> [5,5,5]
=> ? = 3
[5,2,2]
=> [[5,2,2],[]]
=> [[5,5,5],[3,3]]
=> [5,5,5]
=> ? = 3
[5,2,1,1]
=> [[5,2,1,1],[]]
=> [[5,5,5,5],[4,4,3]]
=> [5,5,5,5]
=> ? = 4
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,4]]
=> [5,5,5,5,5]
=> ? = 5
[4,3,1,1]
=> [[4,3,1,1],[]]
=> [[4,4,4,4],[3,3,1]]
=> [4,4,4,4]
=> ? = 4
[4,2,2,1]
=> [[4,2,2,1],[]]
=> [[4,4,4,4],[3,2,2]]
=> [4,4,4,4]
=> ? = 4
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,2]]
=> [4,4,4,4,4]
=> ? = 4
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [4,4,4,4,4,4]
=> ? = 4
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2]]
=> [3,3,3,3,3]
=> ? = 3
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> [[3,3,3,3,3],[2,2,1,1]]
=> [3,3,3,3,3]
=> ? = 3
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> [[3,3,3,3,3,3],[2,2,2,2,1]]
=> [3,3,3,3,3,3]
=> ? = 3
[3,1,1,1,1,1,1]
=> [[3,1,1,1,1,1,1],[]]
=> [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [3,3,3,3,3,3,3]
=> ? = 3
[2,2,1,1,1,1,1]
=> [[2,2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1]]
=> [2,2,2,2,2,2,2]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]]
=> [2,2,2,2,2,2,2,2]
=> ? = 2
[9,1]
=> [[9,1],[]]
=> [[9,9],[8]]
=> [9,9]
=> ? = 2
[8,2]
=> [[8,2],[]]
=> [[8,8],[6]]
=> [8,8]
=> ? = 2
[8,1,1]
=> [[8,1,1],[]]
=> [[8,8,8],[7,7]]
=> [8,8,8]
=> ? = 3
[7,3]
=> [[7,3],[]]
=> [[7,7],[4]]
=> [7,7]
=> ? = 2
[7,2,1]
=> [[7,2,1],[]]
=> [[7,7,7],[6,5]]
=> [7,7,7]
=> ? = 3
[7,1,1,1]
=> [[7,1,1,1],[]]
=> [[7,7,7,7],[6,6,6]]
=> [7,7,7,7]
=> ? = 4
[6,3,1]
=> [[6,3,1],[]]
=> [[6,6,6],[5,3]]
=> [6,6,6]
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> [[6,6,6],[4,4]]
=> [6,6,6]
=> ? = 3
[6,2,1,1]
=> [[6,2,1,1],[]]
=> [[6,6,6,6],[5,5,4]]
=> [6,6,6,6]
=> ? = 4
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> [[6,6,6,6,6],[5,5,5,5]]
=> [6,6,6,6,6]
=> ? = 5
[5,4,1]
=> [[5,4,1],[]]
=> [[5,5,5],[4,1]]
=> [5,5,5]
=> ? = 3
[5,3,2]
=> [[5,3,2],[]]
=> [[5,5,5],[3,2]]
=> [5,5,5]
=> ? = 3
[5,3,1,1]
=> [[5,3,1,1],[]]
=> [[5,5,5,5],[4,4,2]]
=> [5,5,5,5]
=> ? = 4
[5,2,2,1]
=> [[5,2,2,1],[]]
=> [[5,5,5,5],[4,3,3]]
=> [5,5,5,5]
=> ? = 4
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> [[5,5,5,5,5],[4,4,4,3]]
=> [5,5,5,5,5]
=> ? = 5
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> [[5,5,5,5,5,5],[4,4,4,4,4]]
=> [5,5,5,5,5,5]
=> ? = 5
[4,4,1,1]
=> [[4,4,1,1],[]]
=> [[4,4,4,4],[3,3]]
=> [4,4,4,4]
=> ? = 4
[4,3,2,1]
=> [[4,3,2,1],[]]
=> [[4,4,4,4],[3,2,1]]
=> [4,4,4,4]
=> ? = 4
[4,3,1,1,1]
=> [[4,3,1,1,1],[]]
=> [[4,4,4,4,4],[3,3,3,1]]
=> [4,4,4,4,4]
=> ? = 4
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00198: Posets incomparability graphGraphs
St001330: Graphs ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 33%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[7]
=> [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ? = 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 4
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ? = 1
[8]
=> [[8],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 1
[7,1]
=> [[7,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 4
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ([(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 4
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 1
[9]
=> [[9],[]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([],9)
=> ? = 1
[8,1]
=> [[8,1],[]]
=> ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[7,2]
=> [[7,2],[]]
=> ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[7,1,1]
=> [[7,1,1],[]]
=> ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9)
=> ([(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 4
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.